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Most of the time on this project wasspent on the trajectory planning
problem. As was guessedin the proposal the construction is equivalent to
the classicalspline construction in the casethat the systemmatrix is nilpo-
tent. If the dimensionof the systemis n then the spline of degree 2n - 1 is

constructed. This gives a new approach to the construction of splines that is
more efficient than the usual construction and at the same time allows the

construction of a much larger class of splines. All known classes of splines

are reconstructed using the approach of linear control theory. Currently one

paper is essentially finished and another will be finished before the first of

the year. As a numerical analysis tool control theory gives a very good tool

for constructing splines. However, for the purposes of trajectory planning it

is quite another story.

Consider the following simple situation 2 = u(t) and y = x(t) and suppose

that we want to track a signal that is of the form of a simple step function, 0

to the left of zero and 1 to the right. Denote the function by s(t). Suppose we

could track the signal exactly. Then y(t) = s(t), _) = k and finally u(t) =

the derivative of a delta function. We have been able to prove using control

theoretic techniques that the spline construction tracks not only the function

but its first two derivatives. Thus the control will approximate the derivative

of a delta function. Even if we disallow discontinuous trajectories the problem

remains. If the function is piecewise analytic and continuous the control will

still track a derivative of a delta function or the delta function itself. The

problem is that the spline construction is too good. Some improvement can

be achieved by matching the initial states and terminal states but there is

still a problem.

We're in the process of developing schemes that will relax the constraints

that require that the system pass exactly thorough a sequence of points, but

only require that the system pass within a window centered at the point. I

feel that this will give a satisfactory control. The relation of this scheme to

asymptotic model following is interesting. In the classical asymptotic theory

a signal is given and the control is constructed in order to bring the system

and control together at infinity. Here we are asking that the signal and

the control be brought together at a sequence of points and at fixed times.

After some thought it is clear that the scheme is going to have problems.

If we consider the rather mundane situation of trying to follow another car

very closely we know that in order to maintain a very tight margin very

high accelerations and decelerations are necessary. The exact same tiling is



happening here. I along with the students will develop a theory to relax the

constraints that impose the conditions of exact matching at specified times.

Acceleration of thirty G's are probably not suitable for a passenger aircraft.

I have enclose four documents which contain reports of work done under

this grant. The work is proceeding at a very good pace and I feel that we

have made major accoomplishments during this year.
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Abstract

In thiswork, the relationshipbetween splinesand the controltheoryhas been an-

alyzed. We show that splinefunctionscan be constructednaturalyfrom the control

theory. By establishinga framework based on controltheory,we provide a simple

and systematicway to constructsplines.We have constructedthe traditionalspline

functionsincludingthe polynomial splinesand the classicalexponentialspline.We

have alsodiscoveredsome new splinefunctionssuch as trigonometricsplinesand the

combination of polynomial,exponentialand trigonometricsplines.The method pro-

posed in thispaper iseasy to implement. Some numericalexperimentsare performed

to investigatepropertiesof differentsplineapproximations.

1. Introduction.

Spline functions are well known and are widely used for practical approximation of func-

tions or more commonly for fitting smooth curves through preassigned points. Spline tech-

niques have the advantage over most approximation and interpolation techniques in that

the_ are computational feasible. Most of the published spline algorithms are for polynomial

splines and the vast preponderance axe for cubic splines. There is a small but excellent lit-

erature on the so called exponential splines and there is an even smaller literature on splines

with more or less arbitrary nodal functions, [9, 3].

In this paper we will present a common frame work for splines that includes polynomial

splines of all orders and generalized exponential splines of all orders. This common frame

w2rk is based on ideas from linear control thbor]. Let's recall some basic ideas from control

theory. A linear control system is a differential equation

._tx(t )d.. = A_(t) + Bff(t) ..



where _" E IR '_, C E IP-"_ and the matrices A and B are constant matrices of compatible

dimension. The vector _ is the state of the system and the vector C is the control. The idea

is that we can use the control _ to steer the state from point to point in the state space R".

We can think of the first component of _ as representing the position of the system and for

appropriate A the second coordinate is the velocity, the third acceleration, etc. A common

situation, for example in air traffic control, is to specific the position that the system must

be in at a sequence of times. So in fact what we have is a set of points through which

the system must traverse at specified times. One could fit these points with a spline curve

and then ask for the control that would move the system along that trajectory. In fact this

can be done but we will show that the control law can be developed from natural control

theoretic principles that will move the system through the points at the desired times and the

resulting curve will be piecewise analytic and will have 2n - 1 continuous derivatives, i.e. a

generalized spline. With this framework we can construct a wide variety of spline functions.

If the matrix A is nilpotent then the resulting construction is just that for polynomial splines.

If the matrix is 2 x 2 and one eigenvalue is zero and the other is a nonzero real number then

the spline is the usual exponential spline. In general the nodal functions are the coordinate

functions of the matrix function eAt .

In this paper we give a unified treatment of all of the common one dimensional spline

functions using simple ideas from control theory. It is coming to be understood that there is

a large overlap between linear control theory and elementary numerical analysis. Eigenvalue

methods are know to be closely related to the theory of the matrix Riccati equation [2], there

are close relations between observability and quadrature techniques [8], system identification

and Prony's method are very similar [1] and now we see that the spline constructions and

basic linear controllability are manifestations of the same phenomena.

In Section 2 we review basic material from the theory of linear control systems that is

needed for the development and give a condition that characterizes the optimal control law

that generates the spline functions. In Section 3 we give the details of the construction

of spline functions using control theory and in Section 4 we classify the possible classes of

spline functions that arise from the control theoretic construction. In" Section 5 we examine

in detail some of the particular classes from Section 4 and finally in Section 6 we present a _ ,b

series of numerical examples compa_ring the various classes.
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2. Some results from the control theory.

In this section we collect a series of results from linear control theory. Most can be found

in any control theory textbook. See, for example, the book by Brockett, [5].

Consider the linear system:

d.
-_x(t) = A_(t) + _(t), t E [0, T], (2.1)

with

[010...0][0][ )0 0 1 0 0 x2(t)

: : : : _= : , _(t)= ! ,
A= 0 0 0 i ' o

al a2 a3 am 1 Xm(t)

and the observation function

(2.2)

y(t) = T_(t), _ = (1,o,...,o). (2.3)

Let us divide [0, T] into n subintervals as

0=t0<tl <'--<tn-1 <tn-'T,

and define hk = tk - tk-1, the length of the rth subinterval. Our goal is to find a control

law u e Cm-=[0, T] that drives the system (2.1) from 2(0) = x-¢ to _(T) = x-'r such that the

observation function y(t) satisfies the interpolation conditions

y(tk) = ak, k = l,...,rt-1.

Furthermore, u(t) minimizes the functional
%

foTu(s)2ds. (2.5)

Such a control is called an optimal control.

Definition. The system (2.1) is called controllable if for any _o, _-_, and r > 0, there is

a u(t)such that, " •

f• _r :'_,(T) -'_ cAr_ 0 _-" eA(v-s)_(8)ds.

"o .

(2_4)

Theorem 2.1 : The system (2.I) is controllable if and only if

rank(b, Ab,...,A'_-'b)=m. (2.6)
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For the special matrix A as in (2.2), it is easy to verify that

(_', A_,..., A"-I_ ') =

00..-01

00...1.

• : ". : :

0 1 ... * *

I * -.- * *

(2.7)

and hence the condition (2.6) is satisfied. From Theorem 2.1, the system (2.1) is controllable.

Theorem 2.2: The system (2.1) is controllable, if and only if the matriZ fo _
e-As_T e-AVSds

is invertible.

For the special matrix in (2.2), we then define

M( t) = (]ot e_A,_r e_Ar ,ds)_l.r (2.s)

Theorem 2.3 : When the system (2.1) is controllable, a control that moves the system from

_(t) = _L to _(t 3 = _R given by

u(t) r-_ -Art, ft -A,r'g'_ --ATs-- \--1=o e t], e oo e as) (e-A%-e-":Z,_), (2.9)

ft _minimizes the functional J(v) = v2(s)ds among all controls that move the system from

e(t_)= _L to e(t-)= YR.

Theorem 2.4 : When the system (2.I) is controllable, a control u E C"-2[0, T] that moves

the system from _(0) = _o, passing through fl'_.(tk) = crk, to _(T) = x-'T is'given by

rt--1 _rL

u(t) = _ Z_h(t) + _'r,g,(t), (2.1o)
k=l i=1

with

0 o

e_lleA(tk-t)'b t < tk,
fk(t) = { 0 t>tk, k= 1,.--,n- 1,

gi(t) = _ea(t"-t)b, i= 1,...,m,

wheree- T = (1,0, ... ,0), • ..,e,,,--'l"= (0, ... ,0, 1), andflk's, Ti'aredeterminedbyn-1 interpo-

lation conditions fl" g(tk) = ak and m boundary conditions _(T) = z-'r. Moreover, the control
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fo T(LIO) minimizes the functional J(v) = v2(s)ds among all functions v e C'n-2[0, T] that

drives the system (2.1) from _.(0) = z-'°, passing through ff _(tk) = otk, to _,(T) = z-'T .

The construction of the optimal control is based on Hilbert space techniques and is based

on writing the interior constraints in terms of a linear variety defined in terms of the functions

fk(t) and the terminal constraints in terms of the functions gi(t). Once the constraints are

written in terms of linear varieties the form of the optimal control is clear based on the

orthogonal complement of the intersection of the varieties, this is a standard technique and

is found for example in [7] or [6]. The proof of Theorem 2.4 is based on two facts: (i) u(t)

defined by (2.10) is m - 2 times continuously differentiable; (ii) fk's and gi's are n + m - 1

linearly independent functions. In the following, we verify (i) and (ii).

(i) From the construction (2.10), we only need to show that

f_)(tk)=O, r=0,...,m-2, k=l,...,n-1.

Indeed, for all k = 1,...,n - 1, r = 0,-.-,m - 2,

lim f_(_}(t) = lim e-_l(-A )'eA('_-Ob= (-1)'e-_xA_b= 0,
t_t_-O t_tk-o

by virtue of (2.7). Hence fk(t) is m - 2 times continuously differentiable, and so is u(t).

(ii) Set _ 7,g,(t) = 0 for t e [0, T], i.e.,
i=l

F( t ) = _ "yie'cTii eA(tn-t)'b "- pT eA(tn-t)'b-- O,

i=1

with 7= _ 3',_. Then we have F(r)(t) = 0 on [0, T], especially
i=1

F(_)(tk)=ffr(-A)rb=O, r =0,..-m-1.

Therefore,

p-__, A-_, . . . , A,_- I -_) =fir.

In light of (2.7),"p'* is a zerO) vectoraand consequently, 7i = 0, i = 1,.-.,m.

linearly independent functions.

Next we set

fl,,-lf,,-1(t) + _Tig,(t) = O, t E [0, T].
i=1

J

5
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If _,,-1 # O, then
O

" 1 m

A-'(t) - _,,-1 _'_igi(t)" (2.12)
i=l

m

By the definition, f,-t(t) = 0 on (t,_l,t,), So )'-_"/igi(t) = 0 for t e (t,,_l,t,_) which yields
i=l

-,/_= 0, i - 1,... ,m, and hence f_-l(t) - 0 by (2.12). This is a contradiction. Then (2.11)

yields j3,_1 = 0, and consequently "/_ = 0, i = I,..., m. So f,-t and gi's are m 4. 1 linearly

independent functions.

Continue the above procedure by adding fk's one by one, we are able to show that f_'s

and g_'s are rn 4. n - 1 linearly independent functions.

°.

3. Construction of splines by the control theory.

Theorem 2.4 implies that an optimal control for the system (2.1) (with A given by (2.2))

is unique. But in general, _k's and _'i's in (2.10) are difficult to find, we then introduce

a practical procedure to construct a control law that satisfies all the requirements. This

control law actually leads us to a construction of spline functions.

By the existence of a control law, there exists a set of points _1,...,_-_-1 with x_ =

ak, k = 1,...,n - 1 such that the solution of the system (2.1) satisfies £(tk) = £k, k =

0, 1,..., n - 1, n. By virtue of Theorem 2.3, a control law that satisfies all the requirement

can be defined piecewise as

u(t)I[t,_,.tk] = uk(t), k -- 1,..-,n, (3.1)

where uk(t) is given by (2.9) with t_= tk-t, t = tk, ]L = £k-_, and jR = £k. Then equations

to find (n - 1)(rn - 1) unknowns in _t,...,_-I (recall that x_ = ak k -- 1,-..,n - 1, are

known) come from (n- 1)(m- 1) continuity ,onditions on u(t), i.e.,

=. (') , = 0,... ,,, - 2, k = 1,... 1. (3.2)t'k+ 1

From (2.9),

uk(t_) : (A"_):%-AT'"(f,,I[e-'4"b-_'-AT'd-_)-i(e-A'"'_k--'-A'"-'_k-i);..

i

Uk+l(l_k) = (Ar-b)Te-Arik(_['+ie-A'_bTe-Ar'd._)-l(e-At'+ixk+l--e-Ai'x'k).
(3.4)

" Next, we shall simplify (3.3) and (3.4). Toward this end, we introduce a change of variable

s = tk-1 4-s _ into

6



= eArth-lM(h_)e Ark-l, (3.5)

where M(hk) is defined by (2.8). Substituting (3.5) into (3.3), we have

u(k')(t_) = (A"_) T e-Arh_M(hk)(e-Ah'x -_ _ x_-l). (3.6)

Similarly,

u(,) (A,-_)TU(hk+,)(e-Ahk+_k+l _k). (3.7) +l(tk) =

Substituting (3.6) and (3.7) into (3.2) yields a linear system for (n- 1)(m- 1) unknowns in

:_1,..., _,-1:

--(A*b)Te-Arh*M(hk)_ k-' + (A_b)T[e-ArhkM(hk)e -Ahk + M(hk+l)]_ "k

--(A'b)TM(h_+l)e-Ahk+'x -_+1 =0, r=0,-.-,m-2, k= 1,--.,n-1. (3.8)

By virtue of the existence and uniqueness of the optimal control, the linear system (3.8) has

a unique solution and hence its coefficient matrix is invertible.

In order to solve (3.8), The following quantities needs to be calculated, A', e -Ah (e-Arh),

and M(h). Sometimes it is easier to use the Jordan matrix of A, denoted by A. There exists

an invertible matrix Q such that A = QAQ -1, and hence

A t _. r -1 e-AhQA Q , = Qe-^hQ -1, e -arh = Q-Te-ArhQT. (3.9)

_0 hM(h) = ( Qe-^'Q-lbbTQ-Te-^r'QTds) -1 = Q-TM(h)Q-t,

where

M(h) = ( fohe-^'Q-"b(Q-'b) Te-^r'ds) -1.

Substituting (3.9) and (3.10) into (3.8), we then have

(3.10)

(3.11)

_(A,Q-IG) T e-^rh*iQ(hk)Q-'i _'-' + (A'Q-t-g)r[e-^rh*M(hk)e -^h* + 5;/(h1,+_)]Q-t:_ k

-(A'Q-tb-')rlfl(h_,+t)e-^h_+'Q-_ k+_ = O, r = 0,... ,m - 2, k = 1,... ,n - 1.(3.12)

Solving (3.8) or (3.12) for (n- 1)(m- 1) unknowns in _,t,..., _,,-,, we then have the control

u(t) defined piecewise by (3.1). The solution of the system (2.1) is thus given by

f0 t
T,(t) -_- eAtx _0 + eA(*-')_m(s)da

= +
Q

Q

. 7
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Note that x_(t) = xi+l(t), i = 1,...,m - 1. So the continuity of x;(t) is continuity of

zi+l(t) for i < m. Further, continuity of x_'_+r)(t) is continuity of u(')(t), r = 0,..-,m- 2.

Therefore, the observation function y(t) = La'£(t) = zl(t) is a 2m - 2 times continuously

differentiable function that satisfies the boundary conditions

y(_)(0) 0 = zT= z,.+l , y(')(T) ,+,, r = 0,.-.,m- 1 (3.14)

and the interpolation conditions

y(tk)=x_, k= 1,.--,n-1. (3.15)

Hence y(t) is a spline function. We see that from the control theory, we can derive quite

general spline functions. Summing up, we have proved

Theorem 3.1 : (1) There ezists a unique function y(t) E Cn_-_[0, T] that satisfies the

boundary conditions (3.14) and the interpolation conditions (3.15); (2) y(t) is the first com-

ponent of the vector function ._(t) given by (3.13) in which u(s) is defined piecewise on each

subinterval [tk-1, tk], k = 1,..., n, by

U(kr)(tk)= - Te-Ar(t-tk_l)M(hk)(e-Ahk k-

= _ O-'ek-1), (3.16)

where £k, k = 1,-.., n- 1 are determined by solving the linear systems (3.8) or (3.12) (Note

that x-'°, _" and x_, k = 1,... ,n - 1 are given by the boundary conditions (3.14) and the

interpolation conditions (3.15)).

In the next section, we will see that these splines can be piecewise poly-nomials, trigono-

metric functions, exponentials or any combination. As special cases, we are able to recover

classical polynomial splines (odd orde.r) and exponential splines by properly selecting pa-

rameters al,"-, a,_ in (2.2) for the matrix A.

-" ,e •

4. Classification of splines.

The type of the splines is determined by its nodal shape functions. From the control

theory, we axe able to construct the nodal shape functions of splines.

In order to see the kin.d of interpolation functions in _(t), we only need to consider one

subinterval. Without loss of generality, we use the first interval (t0,tl) = (0, h) where the

solution of the system (2.1) is given by

x,(t)-" eA'_ -'0 + eA(t-s)_rt_(8)d$. (4.1)

8
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From Theorem 2.3,

[h e_A._e_A_.d_)_,(e_Ah_,_ _). (4.2)u(t) = P'e-A_'( °
f _

Substituting (4.2)into (4.1), we have

Z'E(t) = eAtx_° + eA(t-O_'e-Ar'dsM(h)(e-Ahe' -- x-'°)

= QeAt[Q-,_ + l_(t)-tl_l(h)(e-^aQ-'_ ' - Q-ix-'°)], (4.3)

where M(h) and ;'_/(h) are defined by (2.8) and (3.11), respectively.

Theorem 4.1 : Let A be given by (2.2), let (pl(t),.." ,p_(t)) be the first row of the matrix

eAt[I - M(t)-lM(h)] = Qe^t[I - M(t)-l_i(h)]Q -_, (4.4)

and let (q,(t),...,q,_(t)) be the first row of the matrix

eAtM(t) -t M(h)e -Ah = Qe^tl_l(t)-'l_I(h)e-^hQ -1. (4.5)

Then for r = 0,-.-, m - 1,

p!')(o) = _,,,+1, pl')(h)=O, i=l,...,m, (4.6)

qJ')(0) = 0, qJ')(h)= 5j,,+1, j = 1,.--,m. (4.7)

Proof: From Theorem 2.1 and (2.7), the system (2.1) is controllable. By virtue of

Theorem 3.3, a control that moves £'(t) from £(0) = _ to E(h) = £.1 is given by (2.9) (with

t = 0, t = h, ]L = z-'°, _R = £1), and consequently

= fie(t)

= _eA'[I-- M(t)-_M(h)]_ + _eAtM(t)-'M(h)e-Ahel

= (p,(t),...,p,_(t))x -¢ + (ql(t),'",q,,(t))_'
tn

• ':, = __x°p'i*(t).+__x_qj.(t_.. J;',, o (4.8)
i:1 e j_ -.'_ .-

_(t)

o._

Choose _ = e'i _1 = 6 in (4:8), and we have

pl')(t) = yl,)(t), ,. = o,...,_ - t.

9 _IGINAL P.i_I I



Therefore for r = 0,.-.,m - 1,
e.

p!')(o) v(')(o) =_'_(o) =,+,(o) o =G+,,__ --- _ = Zr+ ,

plr)(h) y(O(h) x_r)(h) xr+l(h) x =0, i=1,--.= = = = aTr+ 1

Then we have proved (4.6). The proof of (4.7) is similar. •

_m.

We call pi, qi nodal shape functions by the characteristics (4.6) and (4.7). From (4.4) and

(4.5), We see that the nodal shape functions are linear combinations of function entries of

matrices e at and eAtff, l(t) -1. In order to see the type of functions in the spline, we only need

to examine the entries of these two matrices.

In the following, we classify the spline functions derived from control theory. This clas-

sification is based on the spectrum of the coefficient matrix A of the system (2.1) under

different circumstances. We shall concentrate on the case m = 2. The reasons are: (1) The

general situation for large m is very complicated and is difficult to describe precisely. (2)

The case m = 2 has almost all features for the general case. (3) From the practical point of

view, the case m = 2 is the most useful and important case. Let

A= /3 27 , /3,7E

The eigenvalues of A are A1 = 7 + _z-7-fl, A2 = 7 - x/-_"_.

1..),2 +/3 > 0. There are two distinct real eigenvalues. Then the Jordan matrix A of A,

the transformation matrix Q and its inverse are given by

0 A2 ' Q= ,_1 A2 -A2-11 -11 1 "

Then

Xtt
e At

= 0

From (3.11) (by changing h to t), we have

0 )'. (4.10)e,\2t

z'()() ('-'")1 e -x'" 0 -1 (-1, 1) 0 ds_(t)-'= (,h ,h)_ 0 e-A'" 1 o- e_X2 s

1-- (. .(1- e-'_")/2,h (e-(_'+_2)'- 1)/(,h + ,_2)) (4.11)-- (A2--A,) 2 _ (e -c_''+_',)' - 1)/(A, +"As) (1 - e-2:_'t)/2A2 '

and hence

1 ( (e "hi- e-a1')/2Ax (e -_2'- eXl')/(A1 + A2) _ (4.12)
e*'#(t)-'=(___)_ _,(e__,,_e_,,l/(,h+_) (e_,,_ __,,1/2_ /"

.. D
10 ..



1.a. 3' # O, /3 # O. In this case A1,A2,-A1,-A2 are aJ1 distinct. We then have the

exponential spline with basis functions given by linear combinations of ealt, e -alt, e _t, e -a2t.

1.b. 3" = O,/3 > O. In this case A1 = -A2 = vCfl, the basis functions in 1.a. degenerate.

However, by applying the following limits

lim e-a=t -- ealt= lim eMt(c -(M+A2)t- 1) = _tealt '
x,--.-a, A1 + A= a,+a_-o )q + A2

e-art _ ea2t e-a,t(1 _ e(a,+a2) t) re_a, tlim - lira = -
a2--a_ At + A2 aa+a2-o At + A2

(4.12) becomes

( -tea't ) (4.13)1 (e"" - (ea'` e-a")/2"x, .eAt f_(t)-I = _ --re -Mt --

Hence we have the exponential spline with basis functions given by linear combinations of

e Vrfit , e - V/'_t , t eV_t , t e - VFdt.

1.c. /3 = 0, 3' # 0. In this case, A_ = 0 (if 3" < 0), or A_ = 0 (if 3" > 0). Again the basis

functions in 1.a. degenerate. Assume that A1 = 0, then A2 = A = 27. From the limits

lim (e&t -- e-Mt) = t, lim e aat = 1,
a_--.o 2A1 a_-o

we have

= 0 e at ' A''5 e-at-1 (1-e-2_t)/2 '

l ( At e-at--l)eAtl_l(t)-I = A"X 1 -- e at (e at- e-at)�2 " (4.15)

Therefore we end up with the exponential spline with basis functions given by linear com-

binations of 1, t, e TM, e -2"yr. Later we shall further show that this is the classical exponential

spline [9].

2. 3'2 +/3 < 0. There are two complex eigenvalues: ,_1 = 3' + iw, A2 = 3" - iw, where

,.,,= V-7 -/3.
2.a. 7 # 0, /3 < 0. Evaluating (4.10) and (4.12), we have the exponential-trigonometric

spline with basis functions given by linear combinations of e"rtsin wt, e"ytcos wt, e -'_t sin wt,

e -'tt COS _t...lp "

2.b. 3' = O, fl < O. Again this is adegenerated case where AI = A2 = iw = iv/-_.

Therefore (4.10) is now

eAt(coswt+isinwt 0 ) (4.16)= 0 coswt+isinwt "

°
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Taking the limit 7 -'+ 0 in (4.12), wethen have

-1 ( sinwt/w -t(coswt + isinwt) I (4.17)
e^tff4(t)-I = 4w---'-i\ -t(coswt - isinwt) sinwt/w / "

p $

Hence, we have the polynomial-trigonometric spline with basis functions given by linear

combinations of sin x/Z-fit, cos v/S-fit, t sin x/L--fit, t cos v/Z-fit.

3. 72+fl=0. In this caseAl =,X2=7.

3.a. 7 # 0. We have non-degenerated Jordan form in this case,

A=( _ 1)7 , Q= ( 1-_/7)7 ' Q-l=( 07- 1/71 ) " (4.18)

Therefore,

0 e"a 0 1 '
(4.19)

t 1 --S
-- 1 )ds

z( )= - - (4.2O)
1/7 - s 1

After some more detailed manipulation (see the next section) we can show that this is the

exponential spline with basis functions given by linear combinations of e_t, te "rt, e -'rt, te -'_t,

similar to the case 1.b.

3.b. 7 = 0. In this case, A itself is a Jordan matrix. We compute directly the following

quantities:

A= 0 0 ' 0 1 '

fo'(1-s) (0)(0,1)( 10)ds= ( ta/3 -t2/2) (4.22)M(t)-I = 0 1 1 -s 1 -t_/2 t "

( -ta/6 t2/2) (4.23)eAtM(t)-I = --1212 t "

Then we have the polynomial spline with basis functions given by linear combinations of

"'- 1, t, t 2, t 3. In the next section, we shall further show that this is the well-known cubic spline

[4].

From the above discussion, we see that we may encounter all kinds of splines by varying

parameters fl and 7. Two general cases are 1.a. and 2.a. where we have full sized exponential

12
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or exponential-trigonometric splines. Degeneration occurs when zero or multiple eigenvalues

appear. The extremal is the case 3.b. when both eigenvalues are zero. It is this extremal

case that draws most of the attention. This is evidenced by extensive investigation regarding

the cubic spline in the literature. Case 1.c. also has been investigated from a different point

of view. But we can hardly find any work regarding the other cases (except 1.c. and 3.b.)

listed above.

The situation for m > 2 is similar. Let A1,-", A,, be eigenvalues of A. When A1,..-, A,,;

-A1,-..,-A,, are all distinct, we have the exponential spline with the basis functions given

by linear combinations of

eAlt 9 e-Xl t, ... _ e Amt, e -xmt"

See case 1.a. When complex eigenvalues appear, we get the exponential-trigonometric splines

with basis functions ex_t sinwt, e -'\kt cos_t (see case 2.a.). If we have multiple eigenvalues,

the terms like

te At, t sinwt, te -at coswt, t2e xt, ...

will appear in basis functions (see cases 1.b., 2.b. and 3.a.). Finally, zero eigenvalues will

introduce polynomials into basis functions (see case 1.c.) and the extremal situation is that

all eigenvalues are zero in which case we recover polynomial splines of order 2m - 1 (see case

3.b.).

5. Examples of splines.

In this section, we shall work out in detail some classes of splines. We shall explicitly

"construct the nodal shape functions and the linear system needed to solve for the unknown

parameters.

1. Our first example is the case 3.b. which turns out to be the classical cubic spline. We

first construct the nodal shape functions. From Theorem 4.1 we need only to calculate the

first row of matrix (4.4) and the first row of matrix (4.5). Let t = h in (4.22), and we have

M(h) = _h2/2 h = h-_ h2/2 hZ/3 "

Thus from (4.21) and (4.23), we have

eAt-eAtM(t)-'M(h) = 0 1 - 0 1 -t2/2

h2/2
h3/3 )

13
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Hence

pl(t) 1 + 2 )3 = -- 2( )];= --3(__) 2, p2(t) t[l+( )2

t tqi(t) = --2( )' + 3(_) 2, q2(t) = t(_)[(_) -- 11.

(5.1)

(5.2)

They axe precisely the nodal shape functions for the Hermit interpolation.

Next we set in (3.8), r = 0, a?k = (ak, ilk) T, and hk = h_+x = h (by this, we are using

equally spaced intervals). The equation (3.8) is now

--bre-ArhM(h)£k-' +_[e-ArhM(h)e -Ah + M(h)]_k-_M(h)e-ahx -_+1 =0, (5.3)

for k = 1,.-.,n- 1. Substituting

e_ArhM(h)= ( 1h 0 12( _ h2/2) 12(1 h/2 )- 1 ) _ h 2 h3/3 = -_ -hi2 -h2/6 '

12(1 -h/2 )M(h)e-ah = [e-arhM(h)]T = h---_ h/2 -h2/6 '

e_ArhM(h)e_Ah=12 (1 h/2 ) (1-h ) 12(1h-'5 -hie -h2/6 0 1 ='_ -hi2

into (5.3) yields,

+ (0,:', ak 6 2 ak+t = O,

or

3

_k--1 + 4/3k + _k'k'l : _(CIQ¢+I -- t_k-1),

In the matrix form (5.4) is

410 ... 00 f fll

141-..00

014.--00

: : : ".. : :

0 0 0 ... 41 ft,-2

0 0 0 ... 1 4 _fl,-1

k= 1,...,n- 1.

-h/2
h2/3 )

a2- ao ' /3o _

• az - al 0

3 a4 - a2 0

h : !

Otn-1 -- _n--3 0

a,_- a,,-2 _ /5,, )

(5.4)

(5.5)

14
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This is precisely the same linear system as we construct the cubic spline. After solving _k's

from (5.5), the desired cubic spline can be expressed piecewisely on the subinterval [t_-l, t_],

k= 1,.-.,n as

v(t) = (_k-lpl(t -- tk-1) + fl_-lp2(t -- tk-1) + akql(t -- tk-1) + flkq2(t -- tk-1),

where pl,t_,q_,q2 are given by (5.1) and (5.2).

2. The second example is the case 1.c. which is the classical exponential spline [9]. The

nodal shape functions are again derived from the first rows of matrices (4.4) and (4.5). We

use the Jordan form. let Ai = 0, and A2 = A (4.9), and we have

(11)Q= oh =7 o

Using (4.14) we can calculate (by setting t = h),

_(h) = _3 ( At
e-At _\

-1 ( (1 + e-Xa)/2
e -A_- 1 = C(A)

1 (1 - e-2at)/2 1 , )Ah(1 - e-_h) -' '

where
2A3

C(A) = Ah(1 + e -Ah) -- 2(1 - e-Ah)"

Recall (4.14) and (4.15), and we have

QeA'[I- M(t)-_/fi(h)]Q -1

= (p,(A;t). p2(A;t)),

where

p,(A; t) = 1 -- At(1 + e -Ah) - (1 - e -Ah) - e A('-h) + e -At
Ah(1 + e -_h) - 2(1 - e -Ah)

(5.6)

p

15



_(A;t) -
eAt-1 h 1-e -AA t 1-e At

'-°-_[ Ah (h+ AA )
A 1 + e-ah- 2 ah

1 (1_-:;=__)

Ah

(5.7)

Q e^t i_'l ( t )- ai_ ( h )e-^h Q -a

A4 0 A 0 eAt e-At--1 (1-- e-2At)/2 "

((l+e-ah)/2 1 ) (1 0 )(A--1)1 Ah(1 - e-_h) -I 0 e-ah 0 1

A4 0 A 1-e at (e at-e-at)/2 1

0 1

= (ql(A;t). q2(A;t)),

where

ql(._; t) "-- 1 -- pl(,_; t), (5.8)

h [1-e -_h t 1-e:_t _'h _1 e :_t-2+e -'\t
q2(A;t) = 1 + e -_h - 2 at,1-o-_ :_-% (_ + _£ )- _h Ah ]. (5.9)

(5.6) - (5.9) are nodal shape functions for the classical exponential spline.

Next we set in (3.12), r = 0, £k = (ak,/3k) T, and hi, = h/,+_ = h. The equation (3.12) is

nOW

-(Q-_'g)T e-^Th f4(h)Q-l_.k-x + (Q-l-g)T[e-Arh_I(h)e-^h + -_/(h)]Q-_2 k

-(Q-lb)T.f4(h)e-^hQ-12 k+l =0, k= 1,-..,n- 1. (5.10)

- Spbstituting

1e-^_t(h) = C(A)_. 0

i(-i,i),(Q-lg)T _ A
...

{ (1 + e-_)/2
C(_) t e-ah

1 )e-_h 1 Ah(1 - e-ah) -1

Ah(e _h- 1)-1 ,

iQ(h)e-hh = [e-^hlQ(h)] T C(A)( (l + e-'_h)/2 e-_'h )= 1 Ah(e _h-l) -1 '

16



e-^h/14r(h)e-^h ----C(A)0 e-_h i Ah(e_h-l)-'

' (1 + e-_h)/2 e-_h
C(A)

, e -'_h Ahe-_h(e_h _ 1) -1 J

into (5.10), canceling C(A)/A 2, we have

_(_1,1)((1+e-Xh)/2 1 ) (A -1) (_k-x ke-_'h Ah(e _h- 1)-' 0 1 k _k-1 ]

+(--1, 1) 1 + e -_h Ah(1 + e-2;_h(1 - e-:_h) -1 0 1 _l:

1 Ah(e ah - 1) -1 0 1 _ _k+l

or

1 - e-2:_h - 2Abe -ah .Ah(1 + e -=ah)

2(1- e-_) (#k-_+ #k+,)+ t T- _---_ -
1 --e-_h

--- A 2 (ak+,--ak_l), k=l,--.,n--1.

(1 + e-'Xh)],3k

(5.1z)

This is the linear system for the exponential spline, it can be written in the matrix form as

a(A;h) b(A;h) 0 ... 0 0 I #_

b(A;h) a(A;h) b(A;h)..- 0 0 /32

0 b(A;h) a(A;h)... 0 0 #3

: : : ".. : : :

o o o ... a(,x;h) b(.X;h) #,,__
_, #n--10 o o ...b(A;h) a(_;h)

3 _4 _ O_2

_n-1 -- O¢n--3

a,_- a,.,_2 b(A; h)_3,,, J

(5.12)

where

a(A; h) = 6 Ah(1 + e-2_h) - (1 - e -=_h)
Ah(1 - e-Ah) 2

b(_;h)=3
1 - e -2_t' - 2Ahe -_l'

Ah(1 - e-;_h) 2

Again, after finding #_'s, the spline can be expressed piecewise by the nodal shape functions.

" 17 .
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It is interesting to examine the limiting case for the exponential spline obtained above.

Applying the L'Hospital's rule three times, we axe able to verify that

lima(A;h) = 4, [imob(X;h ) = 1. (5.13)
X--,O

We then recover (5.5), the tridiagonal systems for the cubic spline. Further we can verify

that (by successively using the L'Hospital's rule)

• t (h)3 _2(h)3 +:
ql(t) is one of the nodal shape functions for the cubic spline given by (5.2). The other three

nodal shape functions can be verified similarly. So the cubic spline is the limiting case for

the exponential spline 4.1.c. when A _ 0. This is not a surprise from the following limit

regarding matrix A of the system (2.1),

_-.o 0 A = 0 0 '

where the left hand side is the matrix A for the case 1.c., and the right hand side is the

matrix A for the case 3.b. We can also examine the limit when A ---*c¢ where

lim a(A; h) = 6, lim b(A; h) = O,
X---*cm A-.-*¢¢

(5.16)

(5.17)

t t

lim p,(A;t)= 1 lim ql(A;t)= _,_--.oo h ' a--,oo

lim p2(A;t)= 0 = lim q2(_; t).

Subst, ituting (5.15)into (5.12), we then have/3k = (ak+l- ak__)/2h, k = 1,..., n- 1, which

is the central difference scheme• We see that (5.16) gives the nodal shape functions for the

linear interpolation. In order to verify (5.17), it is convenient to rewrite

p (A;t) =

q2(A; t)

h e -'_h (Ah + 2)e -ah 2 h

-Ah-2 1-e -ah (Ah-2)[Ah(l+e-:_h)-2(1-e-_h)](A 1--e -ah)

1 C(A) e__h ) e -ah -- 2 ea(t-h) t ''_ e -At h (e -At -- 2)]
- A + -_ -U[-t(1 - + A - _ -'" A -"1 -e -xh '

C(A) [-t(1 - e -ah) -4- 1 - e -At e -ah -- e a(_-h) h(e a(t-h) - 2e -ah +2A 3 A + A + 1 -- e -xh e-a(t+h))]"

So the linear spline (the piecewise linear interpolation) is the limiting case for the exponential

spline 4.1.c. when ,k _ o¢.

18



3. The third example is the case2.b. when/3 = -w 2,7 = 0 and

(01)A = _ws 0 "

Denote

1 1

C1 =w2h s-sin swh, C2=_sin2wh+wh, C3=sin swh, C4=_sin2wh-wh.

Following the same procedure as the first example, we have the nodal shape functions as

following

Clpi(t)

elm(t)

ql(t)

Clqs(t)

= C1 coswt + C2(sinwt - wtcoswt) - C3wtsinwt,

= wh2sinwt- C3tcoswt + C4tsinwt,

= 1-p,(t),

= hsinwh(sinwt - wtcoswt) - tsinwt(sinwh-whcoswh).

When evenly spaced intervals are used, the tridiagonal system for unknowns/3k is given by

b(w;h)t3k_,+a(w;h)/3k+b(w;h)flk+l=c(w;h)(otk+x-otk-,), k= 1,...,n, (5.18)

where

a(w;h) = 2wh-sin2wh, b(w;h) =sinwh-whsinwh, c(w;h) =wShsinwh.

It is easy to verify that,

3a(w; h ) 3b(w; h) 3c(w; h) 3
lim -4, lim -1, lim - h'_,--.o (wh)Z _--.o (wh)3 _--.o (wh)S

which are the coefficients for the tridiagonal system of the cubic spline. We can also verify

that at the limit w _ 0, the nodal shape functions pi(w; t) and qi(w; t), i = 1, 2, have the

relative nodal shape functions of the cubic spline as their limit when w --_ 0. Indeed, we

recover the cubic spline from this trigonometric spline when w ---, 0.

4. The fourth example is the case 3.a. where/3 = -3 '2 and

(01),4 = -3 ,s 27 "

Denote

C = 1 - 2e -s'yh + e -4"rh -- 47ShSe -s'yh.
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Computing the first rowsof matrices eAt - eAtM(t)-lM(h) and e'4tM(t)-lM(h)e -Ah, we

have the nodal shape functions

Cp_(t)

cp_(t)

ql(t)

Cq2(t)

= e'-'v(2h+t)(27h -- 272h _- 7t + 272ht - 1) + e-'rt(1 + "#)

+e-'Vt2h-t)(Tt + 272ht - 27h + 272h 2 - 1) + e-'r(4h-t)(1 - 7t),

= t(e -'_Oh-t) + e -'rt) + e-"t2h-t)(27ht - 27h 2 - t) + e-"(2h+t)(27 h2 - t - 2",/ht),

= 1- v,(t),

= e-'y(3h-t)(h - t -- 27ht) + (e -'_13h+tl + e-'r(h-O)(t - h) + e-"(h+O(2"rht + h - t).

Evaluating (5.3) in the current case, we get the tridiagonal system (5.18) with

a(_;h) = a(7; h)

b(_;h) = b(7;h)

c(_; h) = c(7; h)

= e'_h(1 _ e-4"yh _ 47he-2"_h),

= e-2"rh(1 + 7h) - (1 - 7h),

= 72h(1 - e-_h).

Again we can verify that the cubic spline is the limiting case for this exponential spline when

7---,0.

5. Our last example is a case for m = 3 when

0 1 0)
A= 0 0 1 .

0 0 0

The system (2.1) with A given by (5.19) produces the quintic spline. In this case,

e At ---- 0 1 t ,

0 0 1

(5.19)

(5.20)
• ;o

'"= -t'/s t_/3 -t/2 , (5.21)
• 10 t3/6 _t=/2

240/h5 1201M 201h3)M(h) = [M(h)-']-l=3 120/M 641h3 12/h= . (5.22)
20/h_ 12/h_ 3/h

Using (5.20) -

eAtM(t)-XM(h)e -Ah, we then have the nodal shape functions for the quintic interpolation:

p,(t) - (t,- t)_h' [h2 + 3ht + 6t=], ql(t)= t-_'3[h2-h"- 3ht + 6t=],

(5.22) to compute the first rows of matrices eAt - eAtM(t)-XM(h) and
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u t3
w(t) - (h_t)3[h t + at:i, q_(t)= -_[h(t - h)- 3t_],

p3(t) - (h - t)3t _, t3(t - h) 2
2h 3 q3(t) = - 2h 3

In order to compute the parameters for the optimal control, we set in (3.8) r = 0, 1 _k =

(ak, _, _'k) T, and hk = hk+l = h. Then except (5.3), we also have

_ (A-_)Te-ArhM(h)£k-x + (A_)T[e-ArhM(h)e -Ah + M(h)]_ k -(A-b)TM(h)e-Ah_. k+l = O,

(5.23)

for k = 1,..-,n- 1. Substituting (5.20) - (5.22) into (5.3) and (5.23), after some tedious

symbolic manipulation, we have the following linear system,

8(/3k+x - _3k-,) + h(-Tk-, + 6_ - 7_+,) = _(fk_, - 2f_ + fk+,); (5.24)

7Z__,+ 16_ + 7Z_+_+ h(__l -Vk+_)= h(A+, - A-,), (5.25)

for k = 1,...,n - 1. If we arrange the unknowns as (fll,h7l,...,_,_-x,h%-l), we will get

a linear system with a banded 6-diagonal coefficient matrix; if we arrange the unknowns

as (fll, " " " , _,'*-l, h_l, " " , h"/n-1)

tridiagonal coefficient matrix.

[

= (_T, h.._T), we will have a linear system with a block

S E T

where

S

16 7 0 --.

7 16 7 --.

0 7 16 .-.

: : : "..

0 0 0 ...

0 0 0 ---

0 0

0 0

0 0

: :

16 • 7

7 16

, H=

6 -1 0 ... 0 0

-1 6 -1 ... 0 0

0 -1 6 ... 0 0

: : : ".. : :

0 0 0 ... 6 -1

0 0 0 .... 1 6

E _..

0

-I

0

0

0

1

0

-I

0

0

°,°

.,,

O .,.

** ".°

..°

O o.°

0

0

0

0

-1

0

0

0

: '

1

0
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15(f2 - fo)/h - 7_o- h%

15(f3 -/')/h
i5(A- f2)/h

15(A-,-A-3)/h
15(A - A-2)lh - 7#. + h_.

20(fo - 2f, -F f2)/h + 8#0 + hT0

20(/, - 2I=+ A)/h
20(A - 2A + A)/h

20(A-3 - 2fl-2 + fi-z)/h

20(5-2 - 2f__, + f_)/h -8#, + hT,

In general, if A is a m x m nilpotent matrix with l's on the super diagonal and O's

elsewhere, we shall recover all odd degree polynomial splines (with degree 2m - 1).

6. Numerical experiments.

In this section, we test the behaviors of different splines numerically.

intervals are used for all computations.

Example 1. Comparison of the cubic spline with the quintic spline.

Test function 1.

0 -l<__t<O
f(t) = 1/2 t =0

1 O<t<l

For the cubic spline, we pose, in (5.5), the boundary conditions:

Equally spaced

#o=0 =#.;

and for the quintic spline, we pose, in (5.25), the boundary condition:

#o = O = #., eo = O= .r..

0

Recall that _i and 7j are the coefficients for the first and the second derivatives, respectively.

The spline functions are then constructed for h = .2, h = .1, h = .05, and h = .025. Graphs

are plotted in Figure l(a), l(b). We see that the qualitative behavior of the two splines are

" almost same, but the quintic spline has a little better accuracy.

One interesting phenomenon is that the mesh refinement does not effect the maximum

overshoot of the spline approximation. Since this is very similar to the Gibbs phenomenon

for the Fourier series, we term it as "Gibbs phenomenon" of splines. In fact, all spline

functions have this property.

Test function 2.

g(t) = e -I°:, -1 < t < O.
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For the cubic spline, we pose the boundary conditions:

/3o=-30e x°, /3,=0;

and for the quintic spline, we pose the boundary conditions:

13o=-30e 1°, /3_,=0, "70=960e 1°, 3'-=0.

We use the mesh size h = .2, and plot the graphs in Figure l(c), l(d). We see that the

quintic spline gives much better approximation in the neighborhood of z = -1 since it has

the correct concavity information at z = -1 which the cubic spline does not have.

Example 2. Properties of the classical exponential spline case 1.c.

The test function is the same f(t) as in Example 1. We have observed that for small

parameter A, the behavior is much like the cubic spline. This is not surprise from (5.14). The

interesting fact is: For the moderate A, the graph is very much the same as the cubic spline

(Figure 2(a)). If we fix the parameter A and refine the mesh, we observe Gibbs phenomenon

as in the cubic and the quintic splines. But if we fix the mesh (here we choose h = .1) and

increase the parameter A, we see that the approximation converges to the piecewise linear

function (Figure 2(b), 2(c), 2(d)). This confirms our theoretical analysis made in Section 5.

Example 3. Properties of the exponential spline case 3.a.

We use the same test function f(t) as in the examples 1, 2.

For small parameter 7, the approximating feature of this spline is also like the cubic spline

including the Gibbs phenomenon. But when we fix the mesh (here h = .1) and increase the

parameter 7, an unexpected wiggling appears at t= 0 (Figure.3(a)-3(d)).

Example 4. Properties of the exponential spline case 1.a.

Here we choose

(01)A = -2 -3 '

= -2. Again, the testing function is f(t) as in the previousand we have A1 = -1, A2

examples.

We plot the approximation for h = .1, h = .05, h = .025 in Figure 4(a), 4(b), 4(c),

respectively, again, we observe the similar behavior as that of the cubic spline.

Conclusions

1. Gibbs phenomenon exists for all splines.

2. The quintic spline is recommended if the concavity is important.
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3. From the approximation point of view, the classical exponential spline is preferred

when the function has points of discontinuity.

A final remark.

For the discussion purpose, we constructed spline approximation in this paper by intro-

ducing the nodal shape functions which is not necessary in practical computation. From the

framework we have established based on the control theory in Section 3, all we need to do

is: providing the matrix A, the vector b to the linear system (3.8), solving (3.8) numerically

to obtain £k's, and hence the control law u(t) (see (2.9)). After we have the control u(t), the

expected spline function is given by the first component of £(t) defined by (3.13). Based on

our analysis, we axe able to choose different splines by simply selecting entries of the matrix

A.

The significance of this investigation is two fold: first, it exposes the relationship between

two important fields - control theory and spline approximations. This enables us to discover

new spline functions and to investigate, systematically, the properties of the spline approx-

imations. Secondly, it provides a practical way to construct different splines from a same

simple framework. From our experience, we feel that this construction is more natural and

easier than the traditional approach.
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A BRIEF SURVEY OF CONSTRAINED MECHANICSAND f fVARIATIONAL PROBLEMS IN TERMS OF DIFFERENTIAL FORMS - "_

Robert Hemann

Ever since my graduate student days, I have been impressed and

influenced by the degance and systematization of Mechanics and

Variational Calculus contained in FAie Cartan's book 'Zecons sur Ies

l.nvaxiants Integraux". In the period 1959-69, I expended considerable

effort in the development of Cartan's point of view in many books and

articles. In ttm's paper (wtu'ch will appear as a Chapter in "Interdisciplinay

Mathematics", v. 30), I will give a quick development of some of the

material in my books "Differential Geometry and the Calculus of

Variations" and "Geometry, Physics and Systems".

Another purpose in developing this geometric form of the Equations

oDMechanics in this Volume is that it fits in with my strategy of

investigating mechancis v_th 'singular' features, such as Delta Functions,

Discontinuities, Shocks, etc. As I will show In Volume 30 the C-O-R

constructions of Generalized Functions enable one to define 'differential

forms with generalized coefficients', thus preparing the ground for the

material in this Chapter serving as foundation for Mechanics with Singular

•Data, the Theory of Spltnes on nonlinear manifolds, etc. Further, when

combined with the Computational Methods under development at the AI

1Lab of MIT by Gerry Sussman and co-workers this material wiIl be useful

in the development of Air Traffic Control methodology.

Another gaol of my work is to develop a general structure for ODE

systems, to be used in both 'smooth' and 'generah'zed' (in the sense of

Colombeau, Oberguggenberger and Rosinger) Mechanics, Control and

Numerical Analysis. Since Martin, Crouch have shown that,_in_the linear_

case, Splines may be constructed from linear control system so attenn'on

will, in the future, focus on the Splines associated with Generalized Inpouts

to Nonlinear Control Systems. Work of Sastry and Montgomery indicates

that imporant examples of such systems will be the/Left-Invariant Control

Systems on Lie Groups, wtu'ch have been much studied in recent years by
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researchers interested in Integrable Systems, Robon'cs, and Aircraft

Guidance,

1. Introduction.

There has been considerable interest recently in constrained

mechanics and variational problems. This is in part due to Applied

interests (such as 'non-holonomic mechanics in robotics') and in other part

due to the fact that several schools of 'pure' mathematics have found that

this classical subject is of importance for what they are trying to do. I

have made various attempts [2, 3, 4, 5, 6, 8, 11, 1S, 20, 26, 27] at

developing these subjects since my Lincoln lab days of the late 1950's. In

this Chapter, I will sketch a Unified point of view, using Cartan's approach

with differential forms. This has the advantage from the C-O-R viewpoint

being developed in this Volume that the extension from 'smooth' to

'generalized' data is very systematic and algebraic. (I will only deal with

r_he 'smooth' point of view in this Chapter; I will develop the 'genera]Jzed

function' material at a later point.) The material presented briefly here

about Variational Calcuius and Constrained Mechanics can be found in

more detail in my boooks, "Differential Geometry and the Calculus of

Variations" "Lie Algebras and Quantum Mechanics", and "Geometry, Physics

and Systems".

Here is the basic set-up. Suppose given the following data:

A smooth paracompact manifold X (1.1)

T(X) is its tangent vector bundle

A set {0, col, ..., eom} of smooth 1-forms on X.

O is called r_he action form, {_1, ..., ram} are the constraint forms.

(1.2)

(1.3)

_ Let us suppose given a curve in X:
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x= {t--> x(t)_X: a _t sb}}: [a, b]--> X (1.4)

dx/dt = v = {t -> dx/dt(t) ET(X): a ,: t s b}}: [a, b] --> T(X) (1.5)

is its tangent vector or velocity curve.

(In this Chapter, I suppose all such curves are also smooth.)

Definition. The following real number associated to the curve 1.3 is called
the action:

a(x) = f[a, b]O([dx/dt] (t))dt (1.6)

The following field of 1-covectors along the curve 1.4 is called the force:

{t-> [dx/dt](t))J d0} (1.7)

1.6 and 1.7 are the basic data for both 'mechanics' and 'variational
calculus'.

Now, let us deal with 'constraints':

Definition. The curve 1.4 satisfies the constraints associated with

the 1-forms {¢ol, ..., ram} iff. it satisfies the following set of Pfaffian

differential equations:

0 = tol(dx/dt) = ... = _m(dx/dt) (1.8)

I will show how the basic Equations of Mechanics can be described

very compactly and elegandy in terms of this data.

2. The First Variation formula and the Cauchy chax'acteristic
curves of do.
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Keep the data of Section 1. Let us suppose that only the 'action' form

0 is give, without any constraints. Let x be a smooth curve in X, given as in

1.4. Suppose that 's', 0 1-_s ._1, is a deformation parameter and that

{s -> xs: [a, b] --> X} is a smooth one-parameter family of curves in X,

reducing to the given curve x at 's=O'. For t _ [a, b], set:

v(t) = tangent vector to the curve {s --> xs(t)} at 't= O'

The field {t --> v(t) eXx(t)} of tangent vectors is called an infinitesimal

deformation of the curve x. Then:

d(a(xs))/ds[ s=0 (2.1)

is called the First Variation of the action function function 1.6

along the curve x pointing in the direction of the vector field v.

Using the formula 1.6 for the Action, the Cartan Family Identity:

'V(0) = VJ dO + d(VJ 0)': between a differential form and a vector field, and

Integration-By-Parts, we have the First Variation Formula:

d(_(xs))/ds[s=o=f[a,b]-[dx/dtJdO](v(t))dt + O(v)(b) - O(v)(a) (2.2)

Remark. This formula is a variant of a General Principle:

The Variational Derivative of the Action is the Force (2.3)

It also suggests the following:

Definition. A curve {x: t --> x(t)} is called a Cauchy characteristic
curve for the 2-form dO iff:

[d.x/dt] J do -- O. (2.4)

If x satisfies 2.4, then the First Variation 2.2 vanishes for any infinitesimal

deformation v which satisifies the following conditions"



01/10/95 12:44 _617 258 8682 LCS/AI MIT EDU _ TTU MATH DEPT _007

39 Constrained Mechanics and Vanarional Problems

0(v)(b) = o(v)(a) = 0 (2.5)

Conditions 2.5 are called Transversality Conditions.

At this point, 'syrnplectic structures and foLiations', 'Hamilton's and

Lagrange's Equations' (for special choices of 0), etc. enter in a very natural

way. See [2, 4, 6, 8, 11, 20, 27, 29].

3. The differential equations of constrained extrema and the

augmented action form.

Let us now suppose that {e,o_1 , ..., ore} is given, as in 1.3. Introduce

Lagrange MultipLier Variables:

{kl,...,km} (3.1)

Consider them as Cartesian coordinates of a copy of R m.

introduce the following augmented 1-form:

Then,

0aug = O + kl(aI + ...+ kmO TM

dOaug = dO + dklAta I + ...+ dlmAar TM +

kldm I + ...+ kmdaT n

On X x R m,

(3.2)

(3.3)

Definition. A curve {t --> x(t)} in X is an extremal of the constrained

variational problem associated with the differential form data 1.3 if and

only if there is a curve in X x Rm of the form

{t -> (x(t), kl(t), ..., kin(t)} which is a Cauchy characteristic curve of d0aug.

In other words, the 'extremas' are the images under the Cartesian

projection map: {X x Rm -> X] of the Cauchy characteristic curves of d0aug.

Theorem 3.1. A curve {t --> (x(t), kl(t), ..., kin(t)} is a Cauchy

characteristic curve for the 2-form 'd0aug' if and only if the following
conditions are satisfied:

0 = col(dx/dt) = ... = ¢om(dx/dt) (3.4)
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dx/dtJ do = - xl(t)[dx/dt] J d_l..... Xm(t)[dx/dt] ]dtom

- [dXl(t)/dt] _1..... [dXm(t)/dt] _m

(3.5)

Proof. Let v be a tangent vector to the manifold X x Rm. Then:

vJ dOaug-- vJ (dO + dX1Ao.)l+ ... + dXmAtOm + Z.ldo_l + ...+ Xmdtom)

= vJ dO + v(_.l)Ofl + ... + v(_.l)O fl - o_l(v)d_.l . ... _ arm(v)dXm

+ Xl[VJ dm 1] + ... + Xm[VJd_]
(3.6)

3.6 involves one-forms on X x R m. Notice that the only terms on the right
hand side of 3.6 which involves {dkl, ... dkm} are the terms

'- o_l(v)dXl - ... - a_n(v)_'. If the tangent vector v is to be Cauchy

characteristic these forms must vanish. This leads to the condition 3.4. The

conditions 3.5 now foUow from inserting 3.4 into the Cauchy characteristic
conditions 'v ] do aug = 0' and using 3.6.

q.e.d.

Remark. This result expands the treatment to the 'constrained' case that

Car'tan gave for the 'unconstrained' variational problem in "Lecons sur les

Invariants Integraux". See [2] for the connection with the traditional

'Lagrange Variational Problem' as expounded in Caratheodory's book and

for the definition and properties of 'symplectic foliations' and further
detail.

4. The differential equations of constrained mechanics.

There is considerable confusion in the Literature beween the

Lagrange Variational Problem (or 'constrained extrema') and 'constrained'

(and 'non-holonomic') mechanics'. I will now describe the l_it'C_i_ Suppose
again given the following data:

A smooth paracompact manifold X (4.1)
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T(X) is its tangent vector bundle

A set {0, o,i, ..., o_m} of smooth l-forms on X.

(4.2)

(4.3)

Definition. Let {x: t --> x(t)} be a curve in X.

of the constrained mechanical system associated

4.1-4.3 iff. the following conditions are satisfied:

It is said to be a trajectory

with the data

0 = c_l(dx/dt) = ... = com(dx/dt ) (4.4)

There is a curve in X x Rm of the form

{t-> (x(t), _z(t), ..., _m(t)} such that:.

[dx/dt] J dO = _1(t)_l + ... + _l(t) orn (4.5)

In other words, 4.4-4.5 define an ODE system whose solutions are curves in

X x Rm. The 'constrained mechardcs trajectories' are the projections in X

under the Cartesian map projection {X x Rm -> X} of the solution curves of
the ODE system 4.4-4.5.

5. 'Holonomic' constraints. Equivalence of the Constrained

Extremal and Mechanics equations in the 'holonomic' case.

Suppose given the following data:

A smooth paracompact manifold X

A set {0, oal, ..., oam} of smooth 1-forms on X.

Indices 1 _ a, b, ... _ m

(5.1)

(5.2)

(5.3)

Definition. The constraint forms {oaa}are said to be holonornic iff. there

is a matrix {mab} of 1-forms such thai::

dcoa= _b oaaba u)b (5.4)



01/10/95 12:46 _617 258 8682 LCS/AI MIT EDU 4_ TTU MATH DEFT _010

42 Constrained Mechanics and Variational Problems

Remark. Locally, condition 5.4 is equivalent to the following, more

'geometric', condition:

The Pfaffian System {coa= 0} is Frobenius Integrable (5.5)

Let us now combine conditions 5.4 and the Constrained Extremal

equations 3.5. The foUowing equations result:

dx/dtJ do = -_abXa(t)[dx/dt] ] (coab ĉob)-_a[ClXa(t)/dt] o_a (5.6)

Rewrite this as follows:

dx/dtJ do = - _abXa(t)[(coab(dx/dt) wb) - ojb(dx/dt) (nab

- Y_a[d_(t)/dt] coa

(5.7)

The second term on the right hand side of 5.7 vanishes as a consequence of

the Constraint Equations 4.4, resulting in the following:

[dx/dt]J do = - Zab_.a(t)[(cvab(dx/dt)cob) - _a[dka(t)/dt] coa (5.7)

Theorem 5.1. Let 5.4 be satisfied and let the curve {t --> x(t)} be a

solution of the Constrained Extremal Equations. Then, {t -> x(t)} is also a

solution of the Constrained Mechanics Equations 4.4-4.5.

Proof. That functions {t --> _a(t)} exist satisfying 4.5 is evident from 5.7.

q.e.d.

Here isthe converse:
4._

Theorem 5.2.Let 5.4 be satisfiedand letthe curve {t-->x(t)}be a

solution of the Constrained Mechanics Equations 4.4-4.5.Then, {t-->x(t)}

isalso a solutionof the Constrained Extremal Equations.
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Proof. We must show that the existence of functions {t --> xa(t)} satisfying

5.7 is a consequence of the existence of functions {t-> _a(t)} satisfying

4.4-4.5. Examining the right hand side of 5.7, we see that the {_a(t)} can be

obtained by solving an ODE whose coefficients depend on the {xa(t)}.

q.e.d.

6. The constrained mechanics equations in a 'Hamiltonian' form.

So far, we have been working in the context of general manifold

theory. Let us specialize now to the situation which is close to the

'Hamiltonian' formalism in the traditional particle mechanics case.

Suppose given the following data:

n is an integer (6.1)

The following range of indices:

l<i,j, ... _n

(6.2)

X = R 2n+l _-R nx R nxR

{qi, Pi, t} are Cartesian coordinates on X.

{(q, p, t) --> H(q, p, t)} is a smooth real-valued

function on X, called the Hamfltonian.

(6.3)

(6.4)

(6.5)

0 = _iPidq i - Hdt (6.6)

dH = _iHidqi + _iHidpi + Htdt,

where {Hi, H i, Ht} are the partial derivativ_g-0f

the Hamiltonian function with respect to the

'canonical' coordinates 6.4.

(6.7)

I
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Theorem 6.1. dO = _i(dqi- Hidt)A(dpi + Hidt) (6.8)

Proof. Follows from 6.7 and 6.6, by a direct compuation, which is left to te

reader.

Theorem 6.2. Let V be a smooth vector field on X. Then:

VJ dO = _.i(V(qi) - HiV(t))(dpi + Hidt) - Zi(V(pi) + HiV(t))(dq i - Hidt) (6.9)

In particular, if:

v(t) = 1
then:

VJ dO = _i(V(q i) = Hi)(dPi + Hidt) -

(6.10)

_i(V(pi) + Hi)(dqi - Hkit) (6.11)

Proof. Apply the operation 'VJ ' to both sides of 6.8. 6.11 follows from

substituting 6.10 into 6.9.

Theorem 6.3. Keep the hyopotheses of Theorem 6.2 and condition 6.10.

Suppose further that:

vJ dO = ),(t)_iaidq i (6.12)

where {ai) are smooth functions on X and {t --> is a real-valued

function of 't'. Then, the following relations must be satisfied:

V(qi) = H i (6.13)

V(pi) + Hi = _(t)ai

_i(V(pi) + Hi)H i = 0

(6.14)

(6.15.
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Proof. 6.13-.15 resultsfrom combining 6.11 and 6.12,and comparing

coefficientsof independent coordinate differentialson both sidesof the

resultingdifferentialform relation.

Theorem 6.4. Let V be the vector field on X defined by 6.10 and 6.12.

Then, the orbit curves It --> (q(t), p(t), t)} of V are solutions of the

foUov_ingODE's:

dqi/dt = 0H/0pt

dpt/dt = - 0H/0q i + _(t)ai

(6.16)

(6.17)

_iai(p(t), q(t), t)[dqt/dt] = 0 (6.18)

Proof. Follows from 6.13-6.15.

Remark. Equations 6.16-6.18 form an ODE system of (2n+l) equations for

the (2n+1) 'unknowns: {pi(t), qi(t), ¢(t)}. They are the Hamiltonian

version of the Lagrange Equations of Motion for Constrained

Mechanics. (In this case, there is only one 'constraint, namely 6.18. The

case of more constraints can be handled similiarly.)

7. Final remarks about generalizations.

The material in Section 6 suggests a Generalization of material about

Symplectic Manifolds, Geometric Quantization, etc. from the traditional case

abstracted from Particle Mechanics (as in the work of Dirac, van Hove,

Segal, Kostant, Souriau, etc) to a abstract sitaution paralleEng the material

developed in Section 6.

I will briefly sketch such generalizations. Instead of t/le-Ti_2ri+l,

situation of Section 6, suppose that we are on a manifold X, with the

foUowing relation:

do = f_- dHAdt (7.1)
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'H' and 't' are smooth functions on X. 0 and f_ are, respectively, a I- and 2-

form on X and _ is closed. Suppose that VH is a vector field on X such that:

VHJ dO = _o (7.2)

VH(t) = i, (7.3)

where %' is a 1-form de.fining the constraints and '_' is a function on X.

7.1-7.3 imply:

VHJ f_- V(H)dt + dH = _o_ (7.4)

This relation generalizes the duality relation between 'infinitesimal

symmetries' and 'conserved functions' that plays the basic role in the

'geometric quamtization' theory of unconstrained conservative mechanical

systems. I plan to study this Geometric Structure further in a later

Volume.
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Abstract

In thisreport the problem we are going to study,isthe interpolationof a set

of points in the plane with the use of controltheory. We willdiscover how

different systems generate different kinds of splines, cubic and exponential,

and investigate the effect that the different systems have on the tracking

problem. Actually we will see that the important parameters will be the two

eigenvalues of the control matrix.
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I Introduction

I would like to be_n by thanking my advisor Pr. Anders Lindquist for

initiating contact with Texas Tech. I would also like to thank Pr. Clyde F.

Martin for being my advisor at Texas Tech.

In this report we will look ac a way to store signaatures. We want to

do this by storing only a minimal amount of points on the signature curve,

and still be able to reconstruct the curve by interpolating these points. The

interpolation will be performed by splines, and we will look at the common

splines-problem from the control theory point of view. We can construct a

trajectory of a system that passes through a specified set of points, and thus

interpolate the points.

Two questions that need to be answered arise. First, when is it possible

for the system to pass through the points? Second, when there are many

ways to accomplish that, what sort of conditions should we demand that; the

system fulfill in order that we get a unique solution.

The question of when it is possible to interpolate the points will be an-

swered in the general case in section 2 Reachabilitj and for our particular

system in section 3 The System.

An algorithm to find the solution is developed in section 4 De,_.vations.

The choice of boundary conditions is discussed in section 5 Boundar"j

conditions.

In section 6 Results the results of tests done upon parametric curves axe

displayed and discussed.

A summary in Swedish is provided in section 7 Resumg - Summary in
Swedish.

The programs I have been using are included in section 8 Programs. I.n-

cluded among the Matlab programs is an altered version of the ori_nal Mat-

lab progam quadS.

When we have answered the two questions, we have to decide what kind

of system we will use for the interpolation. We can easily imagine that we

would get to completely different curves if we asked a pedestrian to walk

through a set of points and if we asked a cyclist to ride his bike through the

same points. In the first case we would get (if we suppose that man is lazy),

linear interpolation, and in the second case we would get a smooth rounded

curve. This is the same as in our case where we have exponential and cubic

parametric splines.
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2 Reachability

In this section we will determine under what circumstances it is possible to

take a time invariant linear system from a point Xo at time to to a point xl

at. time tl. It is a vital property to us, because, in order to interpolate we

have to be able to pass through the points. We will call a system completely

reachable if it has the property that this can be done in any positive time

for any two points.

This is a classical control theory question, and it is answered by the

following well known theorem, which was at least implicitly discovered by

Kalman.

Theorem 2.1 Suppose that the system below is given,

x = Ax+Bu
y=Cx

(2.1)

where A is n x n and B is n x k. Then it is completely reachable iff F

[B, AB, AzB .... , A"-IB], is full rank.

In order to prove this and understand how the teachability concept can be

characterized by the matrix F, we wit1 have to look at the general solution

of equation 2.1.

J2x(t) = eA(t-t°)xo + eA(t-')Bu_(s)ds (2.2)

In order to have the desired state xl at time tl the following equality must
be satisfied.

i/xl = eA(t'-t°)Xo + eA(t'-')Buk(s)ds (2.3)

The question of reachability is now easily seen to be the question of whether

there are any solutions to the mapping L : 5t _ R" such that

Lu _x ft[ a ea(tt-,}Bu(s)ds = xl eA(t1_to)x ° A= - =d (2.4)

Since we recognize L as a Linear operator, it is as always very fruitful to use

a theorem from the general theory of functional analysis [4, p.250].
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Theorem 2.2 If X, Y are complete inner-produc_ spaces and A:X _ Y is

a linear continuous operator then

_mA = 2mAA"

We know that R" is a Hilbert space, but we have to look at what kind of

space U is. We choose to introduce the following inner product for U

i?(u, v). g u(t)'v(t)dt

and it can be checked that. U becomes a Hilbert space. We know that there

is a Mjoint operator L" • R'_ ---,U such that

(d, LU)R,, = (L'd, u)u

and we get the adjoint L" of the mapping L through this equation

J?= d' eA( l-'lBu(s)ds

= f_(B'eA'(_-')d)'u(s)da=(L'd,u)u

We thus have a linear mapping W _ LL" : R_'_ R '_, that is, it is actuMly

only a matrix operator.

i?bV Lx eA(tl-,}= LL" = BB'eA'(t1-')ds

With only the basic knowledge about matrices we will now be able to prove

the following lemma

Lemma2.1 Let A be n x n and B be n x k. Then, for all to, tx such that

to < tl we have

Proof: We will do this by showing that flmF C :ImW and 2ml, V _C :lmF.

[3'mF C :JmW]
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Let a E .a..erW, which implies that 0 = a'Wa = f_ a'eA(*l-')BB'eA'(tl-')ads,
i.e.

S:t .B'eA'(t_-')al ds = 0

from which it follows thai

B'e"t'(_t-')a = 0, w E [to,

ioe._

T(t, - S'(A'ya = 0.

This implies that [B, AB,.4;B,...,A'_-IB]'a = O. That is, for an arbitrary

a E _e_W we have a E ._rF' which implies that ._I,V C_ ._erF' and by a

theorem from fundamental algebra this equMs :ImF C_ :YmW.

[0'row C_ O'mF]

Suppose a E :rmW. Then there exists a x E R" such that a = Wx, and

hal:ice

a = _ .4iB tl - s)JB'eA'(t_-')xds
j=0

from which it is obvious that a E IIm[B, AB, A2B,...] and by Cayley-

Hamiltons theorem that a E iJmi", which concludes the proof.

The main theorem of this section will follow as a direct consequence of
the lemma.

Proof:[Theorem 2.1] By lemma 2.1, xt--eA(*l-t°)Xo =_ d E R" and _mF = R"

implies complete reachability.r_
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3 The System

We will consider the system with the state and dynamics _ven by

2_

y

( x = Ax+Bu

ly=Cx

where

(3.5)

A

0 i 0 0 _0 O_

0 A1 oq 0_2 1 0
,B--"

0 0 0 i 0 0

,C=
1 0 0 O)0 0 1 0

This #yes us the property

Y= Cx= ( z)y

and the system dynamics will look like

= A:y+31z+#:_+u:

And it _ves us the following F

0 0 1 0

1 0 A1 a2

0 0 0 1

0 1#2 A2

zk 1

#:

a: Fl,r F1,s

al + a2(A1 + A2) F=,r F:,,

A2 F3,r F3,s

{22#2 "_- A2 F4.7 ['4,S

where

(3.6)

(3.7)
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rl.7 .- (3_2_o "

F1s = al +

r:,r= _i,32

Fa,r = '31+

ra,s = _23:

r4,s = _t3:

a:(A1 + ,\=)

+ a:,31 + a23_.(2,h + M) + A_

&(,h + M)

+ ,\_

+ 3,(A, + ,\_.)+ 90.A_+ 9_.A,,\:+ :3..,\_

+ _=_ + _,..&(,h + 'u:) + A_

As r is easily seen to have full row rank, by simply looking at the first four

columns. The class of systems we are going to consider in this article will all

have the desired property of complete reachability, by Theorem 2.1.

4 Derivations

Given a set of points in the plane {(=o,yo),(=_,y_),...,(=,,y,)}and the

corresponding time points {to, tl,..., t,_} we would like to find the control

functions {Uo, ul,..., u,-1} that takes the system through the points at the

specified times.

Let's study the control u_ : t_ t_+_

As t E [tk, t_+l] the state of the system will be

/'x(t) = eA('-'*)X_ + eA('-')Bu_(s)ds (4.8)
I,

and as we want the state of the system to be xk+1 at time t_+l we get the

following condition.

tk+lx_+l = eA(**+'-**)Xk + eA(**+'-')Bu_(s) d,s (4.9)
Jt_
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The solution u_ to equation 4.9 tha_; minimizes the norm of the control

signal is then _ven by

The control would be specified completely by equation 4.10 if we knew the

whole state-vector at each interpolation point. We know all (x_,yk) but we

do not know the (_, _). To determine the 2(n + 1) unknowns we have to

apply some conditions on the solution, and our first choice will be to require

that the control is continuous,

Assumption 4.1

k=O...n-2

This will _ve us 2(n - l) conditions and will leave only four unknowns. We

will apply the additional conditions on the boundary and we will have to

come back to this in section 5 Boundary Conditions.

In many applications it is just the shape of the trajectory that matters.

and not the velocity that the system tracks the trajectory with. In these

cases it makes it much easier to assume that the time between each point is

a constant.

Assumption 4.2 Let tk+1 - t_ = h.

Assumption 4.2 can be used to simplify the integral in equation 4.10.

ft,,t_'*_ e-a'BB'ea"ds = {r = s - t_} =

fOh
e-Ark e-ArB_'e-A'rdT, e-A'tk

ma:ri_rcanJtant

Definition 4.1

j_0 h
M =t' e_A,.BB,e_A,,d.r
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We can now rewrite expression 4.10 as

u_(t) = B'e-a'(t-tk)M-l(e-ahx_,+, - x_) (4.11)

Using this expression we will now investigate how the continuity condition

in assumption 4.1 looks.

u_(t_+l) = B'e-A'_'M-I(e-Ahx_,+I -- xk) =

B'M-l(e-ahx_,+2 -- x_+1) = Uk+l(t_+l)

We can rewrite this condition using

Definition 4.2

Z -'a M-_e-Ah

W =a e-a'hM-le-Ah + M-1

_ving the equation the simple form

B' (Z'x_ - Wx_+x + Zx_+:) = 0,

In block diagonal form

k=0...n-2 (4.i2)

t

Z r -W

0 Z'

0 0

0 0

Z ... 0 0 0

-W ... 0 0 0

: -.. : : :

0 ... -W Z 0

0 ... Z' -W Z

xo

X1

X2

xn-2

X-n-1

. Xn

=0 (4.13)

Now, we have to look at what the unknowns are. The vector in equation 4.13

is made up of subvectors

:rk

_k

Xk = Yk

ftk
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consisting of two knowns and two unknowns. By partitioning the submatrixes

W,Z_

W _.

I : • : •

W.1 W.2 W.3 W.4

• . o .

,Z=

• : • °

Z.1 Z.2 Z.3 Z.4

: • . .

• • .

. • •

. • o

Z I ....

r. 2 ....

-_3 ....

Z 4 ....

and using the notations #ven in the following the definition, we can keep
the unknowns on the left side and move the position coordinates over to the

righ_ hand side•

Definition 4.3

X _s --

X t_

] [ W'22 W24 ]W. 4 --"
W42 tU44

W.3 "_"
W41 W43

[][ ]Zz_ - B' z2. z2: z42- z4. = z24 z_4

[][ ]Z_ -- B S Zl- Z12 Z32
Z 3. ZI4 Z2,4

I 1 z 41Zl B = B' z.2 z.4 = z42 z44

[ ] Z21 z23Z_B B' z., z.3
Z41 Z43
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And we get the system

z,f -w,_ z,2 •.• o o o
o z,_, -w? ••. o o o
: : : "•• : : :

o o o ••• -wy z_ o
o o o ... z,f -w? z,_

zZ -w? zT_ ... o o
o z2 -w2 ... o o
: : : ".• : :

o o o ...-w2 z_
o o o ... z_ -w7

-_.L I

.,,._et [

• [=

vel ]n-2
vet

_n-1 [

.,,pvel [

- X_ 08

0 _ xl
0 I poa

• I :

0 I xp°"
I " n--2

z_ j _o,Xn-1

xPos

As we evaluate the right hand side, we get a constant vector. Depending

on what kind of boundary conditions we choose to use, the derivations differ

from here. We will deal with the most common cases, each case in turn,

be_nning in the next chapter•

5 Boundary Conditions

In order to get a unique solution to our problem, we had to apply the con-

tinuity condition and the boundary conditions. The continuity condition is

a rather natural condition, but the boundary conditions have to be studied

more extensively• The four m°st c°mm°n choices of boundary conditions in

the one dimensional case according to [2] are

1. Zero velocity at the first and at the last point.

2. Specified starting and ending direction•

3. Natural boundary conditions, y" = O.

4. Periodical conditions.
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We will look at how the two dimensional equivalent of choice number 1

and 2 affect the curves, and for which the same derivation is valid.

Item 3:s two dimensional equivalent, _: = # = 0, requires a derivation and

will be studied in subsection 5.2.

We will avoid dealing with condition 4 as it only complicates the calcula-

tions, and would only be natural and interesting if we were to write the same

word twice, connected with itself as RogerRoger.

Because the effect of the boundary, conditions axe similar at both botmd-

a_es we will restrict ourselves to only talking about the starting point.

5.1 Known velocities at boundary

We have assumed that we also know x_ e_ and x_"_,l. Moving these over to the

right hand side, we get a block diagonal matrix system to solve.

-w? z_ ..• o o
z# -w? ..• o o

: : ".• : :

o o ... -wy zt_
o o .. z,f -w, B

x__

xvel
_--_

X vd
. . n--I

f12

(5.14)

_/'here

B pos B pos B_ vel01 = --Z, lxb +W_xl _Ts-_'_z._r .,_2k 2 -- Z u

,",B pos T.trB. pos _B XPOS
_')k -" --_rlXk-1 + "'r "xk -- _ru k+l

n,,_, = - zfix_"..',+ w2x_O_", - z_x_o-- z_.-,,7'

This can easily be solved, and with a linear increase of time. Having solved

the system above we now know all the sta_es of the system in the interpolation

points• We will now use equation 4•11 for the control, and insert it into

equation 4.8 to get the trajectory.

ft-t" e-A'BB'e-a'"dr M-'(e-A'x,+, xk))X(t) "- e A(t-th) (Xk + JO

fork = O...n-1

t _ [t,,,t_+d (5.15)
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As we can see from equation 5.15 the fundamental matrix and the integral

is the same for all k and only has to be evaluated for t - _ between 0 and h,

once and for all.

5.1.1 Zero initial velocity

We can choose to set

Assumption 5. I

With this condition, we will let the system start up in whatever direction

that minimizes the energy norm of the control signal and takes the system

to the second point.

As we know from one dimensional control theory, a system with a transfer

function with zeros in the numerator will start off in the opposite direction

to where it is going. Such undesired properties should certainly be avoided in

our tracking problem. In the case where al = a2 = 'fit = 3_. = O, the states

x and y axe independent, yielding two one dimensional transfer functions. It

is easily seen to have no zeros, which is good.

Otherwise, we will have to look at the two dimensional transfer function

_ven below:

1
T(s) = x

,,1 1x s(s-A1)

This is a bit more tricky, and we will have to find the Q and D of least degree

that is a solution to the equation

T(s) = q(s)D(s) -1 (5.17)

and satisfies

X(s)Q(a) + Y(s)D(s) = I (5.18)
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It is easy to verify that the choice

Q(_) = I, D(s)= [ s(_ - At) -(c_ + c_2_) ]-(/31 + 9_a) s(s- ,X_) "

is a solution to equation 5.17, and there e.'ds_s X(_) and Y(s) so that equa-

tion 5.18 is satisfied. From Q(s) we can see that the system has no zeros.

The zero initial conditions should thus not _ve us any problems.

5.1.2 Derivative approximation

Instead of setting the velocity equal to zero, another alternative is of course to

specify a starting velocity. However, this requires that we make a good choice,

to avoid situations as exemplified below. Using a bad direction and a high

velocity boundary condition on y = z "_, we get the _aph of figure 1. Even

as we are using n=40 to reproduce the curve, the bazi boundary conditions

are still ruining the tracking.

1.,2

0.6

0.4

-1.5

.!
•-. .7

•.. /

• i

_1 ..O.S 0 0.$ I

x 2Figure 1" Trajectory of system tracking y = , with badly specified starting

direction

As discussed in [3, p.86], the fact is that when we set the boundary

conditions in the parametric case, we do not only specify a direction, but

also the speed in that direction. The greater the speed, the greater impact
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the boundary conditions will have on the solution. We are thus forced to

make a good choice, and we would like the choice to get better the more

interpolation points we are using. A simple choice tha_. satisfies this is

Assumption 5.2

XI -- XO

(X0,_0) --
h

Xn -- X,__ t
(&, _) -

h

which imply that we will set off from the first point in the direction of the

second point, and arrive at the last point in the direction from the next last

point.

Another way of deciding the initial velocity would be to use the same

technic as in Bezier curves and choose the settings uaphically. This would

probably be the best way to get the desired properties of the signatures. As

discussed in [3] the choice of boundary conditions wiU affect the whole curve,

and the solving of the blockdiagonal system must be done over from scratch,

making this method a bit slow. If we are going to do this only once to store

a signature it does not matter. Wha_ matters with this method is that it

adds four more parameters to be stored, and we could probably get equally

good results just by increasing the number of interpolation points by two.

5.2 Constant velocity

Suppose we want to use the boundary conditions

Assumption 5.3

(_0,#o) = 0

(_,,,O,,) = o

This will let the initial direction and constant velocity of the system be

decided so that the control energy is minimized. Using the system dynamics

equations 3.7, we get the equation system below.
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where

[o1 o] ,510,& A2 3o +uo(0)=- Zlzo

Uo(0) = S'M-'(_-A_x, - xo) (5.20)
= B'Zxt - B'M-txo (5.21)

Now, by using partitioned matrixes as in section 4 and the following defini-

tion,

Definition 5.1

we get the system

u,_= ._4__m4_t , ,_ ._-_

a_ - Ut. .x__ + _l.xl

= U_,,- _1 0 -_,.xl

In a similar way we get the equation at the other boundary.

(5.20_)

fl_ ,_ + Wzs - Uz_ x,:'l - ,_l .-t = (5.23)

Adding these two equations to equation 4.14 yields a blockdiagonal system

to solve. This system is two blocks bigger than the one in section 5.1, but it

can also be solved with a linear increase of time. And once it is solved, we

can still use equation 5.15.

A comparison between the three boundary conditions, BC=I zero initial

velocity, BC=2 derivative approximation, and BC=3 zero initial acceleration

is made in section 6.
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6 Results

The first tests with the algorithm were done with matrices A with both

eigenvalues equal to zero, A1 = 0, A2 = 0, and az = a2 = ,31 = _32 = O.

This produces cubic parametric splines, and makes the calculation of the

fundamental matrix easy. The cubic splines produce smooth curves, but were

also able to reconstruct a cusp much better than you would have guessed at

first, as shown in figure 2.

1

O.g

O.,q

0.7

0.6

0.5

0.4

0.3

02

0.1

-1

• ..."..o

'°-%.° .°,""

"°°° ,..""

..'°
%...

Ik l"

• .. :,.'

i i J

--OiJI --4)16 --0.4 -0.2 0 0.2 0.4 0.6 {)18 1

Figure 2: Reconstruction of y = x] with cubic parametric splines where

n=10.

If we look at the function y = z] we know that this function describes a

cusp. But if we parameterized it like x = t 3, y = t2 we see that both z and

y are smooth cubic functions of t, so it is not very remarkable that it can be

reconstructed well.

When we used A-matrices with nonzero eigenvalues, and decoupled x

and y coordinates, i.e. al = a2 = /3_ = /_2 = 0, we were able to generate

exponential parametric splines with the basis functions 1, ,_lt, e"_'t, e -'xlt and

1, A2t, e"_2_,e-_2t for the z and Y coordinates.

The result of taking big eigenvalues is almost linear interpolation, which

can be good for certain applications, but not if it is to be used for storing

signatures. It is quite obvious that the roundness of a persons signature is

one important factor of it's characteristics Therefore, it's vital that one of
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|
$

7

S

i i i i , _ 0

O0 2 4 $ J _0 12 0

t

f
i

2 4 $ $ 10 2

Figure 3: Graph of signature Per, reproduced with A1 = 1, A2 = 1 in the Ieft

figure, and A1 = 100, ,\,. = 100 in the right

2
"10G40 0.2 0.4 0.4 OJ 1 1 2 1.4 1 .& 1 .il 2

=[

• , 14 _ J 2

lS_

IOOQ

0.2 0.4 0 8 OJI I I _' 1.4 1 • lJl 2
._ * i i i i i i i ilk

0 0.2 0.4 0.4 0.4 1 12 1.4 1.6 1

Figure 4: Graph of control signals in figure above.
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data stored on the signature is the eigenvalues of the A-matrix, as can be

shown in figure 3.

Figure 4 shows the corresponding control signals. In the ,\I = 1, A_ = 1

case the linear part of the control is dominating, and in the AI = I00, A= =

100 case the exponendal part is dominating. It is also evident that the

magnitude of the con_rot signals is _eater in the case of larger eigenvalues,

but that is not a problem for our fictitious system.
In the case of nonzero al,ao.,gI,.3-, we get a coupling between the z

and y coordinates. This will give us very complicated basis functions, like

polynomials times exponentials times sine- and cosine-functions.

As with all approximation methods one should always investigate how big

the errors are. To do this we had to somehow determine the distance between

the ori_nal curve and the interpolating one. The tests were pe_ormed on

known parametric curves, so we had an explicit expression for the points on

the original curve. We had to try to find the nearest point on the original

curve to the point on the trajectory. This was solved numerically with the

"Golden Intersection algorithm" . For the method to work we have to assume

two things •

1. The section of the original curve between the two interpolation points

nearest in time is convex.

2. The point on the ori_nal curve nearest the point on the interpolating

curve lies on the section in item 1.

As an error estimate I have calculated the distance between a number of

points on the reproduced curve and the original curve and divided with the

number of points. We have applied this error estimate method on four dif-

ferent curves and with different number of interpolation points and 40 points

between each of these.

points BC = I BC = 2 BC = 3

n = 10 6671.1 5821.1 4515.9

n = 20 1028.4 765.6 502.1

n - 100 8.8 5.9 3.5

Table 1: _ units of error for unit circle.
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!
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i
Figure 5: Graph of circle, reproduced with n=10 and A1 = 10, A= = 10,

BC=l,2,a
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6.1 Four test curves

The first curve we tested was the unit circle. This very round curve was

tracked best by the cubic splines, but the exponential splines did a good job

too, as can be seen in figure 5 and table 1. We can also see that the error

was smallest in the case of zero initial azceleration boundary conditions.

-OJ -0.6 -._4 _ 0 0.2 (14 0.6 0.8 1

o:\ /
°'F \ /
O.7

CLI

O.S

Q.4

0.3

0.2

O.

Figure 6: Graph of y = [zl, reproduced with n=10, n=20 and A, = 10, 12 =

10, BC=2

Next, we looked at a curve with the opposite properties, linear and non-

differentiabl.e, y = ta:l. The error is mainly located between the two points
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points I BC = 1 BC = 2 BC = 3

n = 10 3450.3 3446.8 3450.3

{ n = 20 972.6 972.6 972.6

[ n = 100 40.7 40.7 40.7

Table "2: > units of error for y = ]z t.

next to the non-differentiable point. As could be guessed the tracking of

the curve y = Izfgot better the bigger the eigenvMues of the A matrix

were, the error was reduced to 142/_ units for ,\l = A: = 500 in the case of

BC = 1 and r_ = 10, but for bigger values the numerical calculations failed.

Using negative eigenvatues _ves the same error as the positive, which can be

expected since we have a symmetric curve and time interval and by looking
at the basis functions. The results with different boundary conditions were

very much Mike, as seen in table 2.

This was the only case were BC 3 did not We us the smallest error.

Can we get a smaller error with any choice of the coupling parameters?

Yes, for example by choosing aa = -c_= = 31 = -3-. = 10, we get the

error 3249 # units for n=10. Choosing these parameters could thus be a way

to reduce the error, but by using n = 12 instead, we got the error 2506 /_

units. So we do not get a more efficient way to store it, unless we can find

parameters so we get below 2506 _ units.

point_ i BC = I BC = 2 BC = 3

n = i0 6506.6 5313.7 3842.9

n = 20 1014.4 725.4 460.9

n = 100 8.8 5.8 3.4

Table 3: # units of error for cycloid.

ints BC- 1 BC :'2 BC :3

----T0 13897.6 11664.8 8867.6

= 20 2100.5 1531.0 1001.7

= 100 17.7 11.8 7.0

Table 4: /_ units of error for prolate cycloid.
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Figure 7: Graph of cycloid, BC= 2, reproduced with n=10, n=100 and

Az =lO, 12 =I0
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Figure 8: Graph of prolate cycloid, BC= 2, reproduced with n=10, n=100

and A_ = 10, A2 = 10
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Finallywe look at a cycloid,

¢ = ,vt- sin,'rtg = 1-cos,mr

and a prolate cycloid.

{ _ = =rt-2sin:rt= l-2cos,_

It isevident that the cusp and the crossoverdo not cause any problem, as

could be expected since we ace using a parameterized interpolant.

\Ve can compare the differenceof the _aphs in fig-ureT and 5_o-ure8,

where we are using one c,mideapproximation with n=10 and one extensive

approx_imation with n=100. This time itisevident that the errorismainly

located at the boundaries. In table 3 and table 4 we can see chat the best

resultscame from using constant velocityboundary conditions.

Loo "kin_ at table 3 and table 4 a_ain, we see that the error decreases at

an approximately cubic rate as the number of intel-polation points increase,

which is much better than the quadratic decrease that can be seen in table 2.

Nly g-uess is that this behavior comes from the fact that the curve 77= ix[

does not have a differendable parameterization.

6.2 Applied on a signature

Included as figure 9 is a scanned picture of my own sig-nature. I have tried

to pick some roughly equidistant points on the signature, (According to the

scale indicated on the axis.) and used the interpolation algorithm we have

been studying to reproduce it. The reproduction is made with n = 74,

,\I = ,\o = 10 and no coupling between the two coordinates. For boundary.

conditions I have chosen to use constant velocity, since it has been the most

successful condition.

As can be seen we get a very close resemblance between the original and

the reproduction. How close is hard to say because we do not have the

signature given as a parameterized function, therefore we are not able to

calculate the error as before.

The things characterizing the signatures, are also the things that are hard

to recover with the interpolation. Such as the turnover in the connection from

the _P", and the cusps in the :'r". To get a good reproduction, an equidistant
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Figure 9: The scanned signature
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Figure I0: The reproduced signature
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distribution of the interpolation points ls ,not enough, more points has to be

concentrated around the characterizing areas.

T Resum@ - Summary in Swedish

Lag-ring av sig-aa_urer _ g6ras p& m_knga s_itt. Vi hat valt art lagra ett antal

punkter p& signaturen, och sedan reproducera derma genom art interpolera

punkterna med splines.
Genom art anv_nda v_k/inda resuttat inom systemteori s& -kan man gener-

era olika sorters splines genom art _indra p& n&gra parametrar. Jag har nytt-

jar derma metod fSr art generera parametriserade splines _ planet. Man inset
Shaft art man m_ste infdra randvillkor p_ ISsnmgen. och valet av dessa fkr

inte ske hut som heist eftersom de p&verkar hela 16snmgen. DK,-fSr hat jag

la_ ner en hel del arbete just p& derma punkt. De bgsta resulteten hat jag

erh&llit genom valet art ha konstant hastighet rid _ndpunkterna.
En av de saker som karaktiiziserar handsnlar _ir dess rundhet. Derma kan

ges en direkt5vers_.t_ningiegenv_.rdena tillsystemmatrisen, och vi kommer

ailts&v_iljaart lagra dessa ut6ver punkterna pg sig-naturen.
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8 Programs

The pro_ams in Matlab and .Maple tha_ were used to implement the algo-

rithm developed in thisreport follow.

8.1 NIatlab Program

To make it easier to understand the structure of the pro_am, the following

flow charts describe how the pro_ams are traversed.

run(BC,n.a)

0

EvaL_.ates the paramete,_zed function in nn points.

•[ points(nn) _ _klX(nn),YY(un) j
I '

AppSes the algorithm on the points in R.
[
.[ aig(l:LxvetO _'eLn) or alg2(R) ]

alg, alg2

0

Evaluates the matr_, integral M.
r
.[ quadSmod(int)_quadSstpmod(int)]

Evaluates an error estimate.

-[ dist _----[ helpdist ]

The loops marked with an umSlled circle is on/}'available when the inter-

polated points are _ven by the parameterized function (X.X(t),Y'Y(t)).
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function error=run(BC,nn) ;

'/,BC _. Type of boundary conditions

7. ! = zero initial and final velocity.

Y, 2 = heading for first point, last.

[, 3 = zero initial and final acceleration.

_, If nn is specified, runs alg with nn points given by XX,YY.

Y. Othez-;ise runs alg with points given by ginput.

global n h alphal alpha2 betal beta2 lambdal !ambda2

global errorcalc ctrlsignal

clg

%7. Setting of parameters

alphal=O ;

alpha2=O ;

bezal=O;

be_a2=O ;

lambdal=lO ;

lambda2=lO ;

XX

Decides what steps are going Zo be made

errorcalc=l; % error estimation

ctr!si=_nal=O; 7. plotting of control signals

if nargin == 1

[x,y]=ginput;

R(l,:)=x'; K(2,:)=y';

else

K=points(nn);

end;

n=leng_h(K)-l;

h=2/n;

% Number of interpolationpoints -i.

X Time inbetween points

XX plots a circle at all the points thats interpolated 7.X

hold on

for i=l:n+l
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piotfRfl,i),R(2,i),'o')

end;

Z% Calling alg with the prepared data Z%

if BC == 3

error=a!g2(R);

else

if BC == 2, xve!0=(R(:,2)-R(:,l))/h;

else xve!0=zeros(2,1);

end;

if BC == 2, xveln=(K(:,n+l)-R(:,n))/h;

else xveln=zeros(2,1);

end;

error=a!g(R,xvel0, rzeln);

end;

_ Loop so allow graphic alteration of BC. %_

b=input('"l" for graphic mod of BC, "0" to quit ');

while b == I,

xvel0=10*(ginput(1)'-R(:,l));

xve!n=-10,(ginpuz(1)'-R(:,n+l));

clg

hold on

for i=l:n+l

plo_(R(l,i),R(2,i),'o')

end;

error=alg(R,xvel0,xveln);

b=inpuZ('"l '' for graphic mod of BC, "0" to quit ');

end;

end;

function R=points(nn);

Forms R with the help of XX, YY.
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% R = 2*(nn+1)-matrix.

global a b h

a=1 ; b=a;

h=21nn ;

for i= O:nn

R(:,i+l)=[XX(-l+i*h); YY(-l+i*h)];

end

end;

function res=XX(=);

global a b

res= a*z*pi-b*sin(z*pi);

end;

function res=YY(t)

global a b

res= a-b*cos(=*pi);

end;

function error:alg(K,xvelO,xveln);

% R : Matrix of interpolationpoints, xO ... xn.

first row = x-coordinates, second row = y-coordinates.

xvelO, xveln = Boundary conditions

global a b A B C n h alphal alpha2 betal beta2 lambdal lambda2

global errorcalc cZrlsignal

_ The System Z_

A:[[ o 1 o o]

[ 0 lambdal alphal alpha2]
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[o o ol]
[ beta1 beCa2 0 lambda2]] ;

B:[[O O]
[I O]
[0 o]

[o 1]];
c=[[i o o o]

[o o i o]];

%% Calculation of the integral from 0 to h in m steps %%

m=40; % number of points be¢_een ±nterpolationpoints

tol=!e-08; % the numeric error tolerance

Mtau(:,l:4)=zeros(4);

_au=O;

for ]=l:m

oldtau=tau;

tau=oldtau+h/m;

Mtau(:,4*j+!:4*j+4)= quad8mod('int',oldtau,:au,tol)

+ Mtau(:,4*j-3:4*j);

end;

M=Mtau(:,4*m+l:4*m+4);

%% Forming of the Matrixes for the Blockdiagonal system %%

e_Ah:expm(-A*h);

Minv=inv(M);

ZZ:Minv*e_Ah;

WW:e_Ah'*ZZ+Minv;

WL=[WW(2,2) WW(2,4); %64(4,2) WW(4,4)];

ZLU=[ZZ(2,2) ZZ(2,4); ZZ(4,2) ZZ(4,4)];

ZLL=[ZZ(2,2) ZZ(4,2); ZZ(2,4) ZZ(4,4)];

y,Partitioning matrixes

WR=[WW(2,1) WW(2,3); WW(4,1) W'W'(4,3)];

ZRU=[ZZ(2,1) ZZ(2,3); ZZ(4,1) ZZ(4,3)];

ZKL=[ZZ(I,2) ZZ(3,2); ZZ(I,4) ZZ(3,4)];
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_% The boundary conditions %%

xvel(:,l)=xvelO;

xvel(',n+l)=xveln;

7.% Forming of the righz side of the Blockdiagonal system 7.7.

for i=2"n

Omega(:,i)=ZP_L,K(:,i-I)-W_*K(:,i)+ZKU*K(:,i*I);

end;

Omega(-,2)=Omega(:,2)+ZLL*xvel(:,l);

Omega(:,n)=Omega(:,n)+ZLU*xvel(:,n+l);

7.7. Gausselimination to produce upper triangular system 7.%

DD(:,3:4)=WL;

for i=3:n

zd=ZLL,inv(DD(:,2*i-3:2*i-2));

DD(:,2,i-I:2,i)=WL-zd*ZLU;

Omega(.,i)=Omega(:,i)+zd*Omega(:,i-l);

end

7.7. Backsubstitution to solve for the xvel %%

xvel(:,n)=DD(:,2*n-l:2*n)\Omega(:,n);

for i=n-l:-l:2

xvel(:,i)=DD(:,2*i-l:2*i)\(ZLU*xvel(',i+l)+Omeg&(:,i));

end;

7.% Making of state vectors %%

for i=O :n

x(: ,i+l)=[[K(l,i+l)]

[xvel (I, i+l) ]

i+i)]
[xvel(2, i+l)] ] ;
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function error=alg2(K);

R = Matrix of interpolationpoints, xO ... xn.

first row = x-coordinates, second row = y-coordinates.

BC = acceleration in x and y direction are both = O.

global a b A B C n h alphal alpha2 betal beta2 lambdal lambda2

global errorcalc ctr!signa!

Z_ The System ZZ

A=[[ 0 1 00]

[ 0 !ambdal alphal a!pha2]

[0 0 01]

[ beta! beta2 0 lambda2]];

B=[[o o]

E1 o]
[o o]
[o i]];

c=[Ez o o o]
[o o i o]];

_ Calculation of the integral from 0 to h in m steps ZZ

m=40; _ number of points between interpolationpoints

toi=le-08; _ the numeric error tolerance

Mtau(:,l:4)=zeros(4);

tau=O;

for j=l:m

oldtau=tau;

tau=oldtau+h/m;

Mtau(. 4.j+l:4.j+4)= quad8mod('int',oldtau,tau,tol)

+ Mtau(:,4*j-3:4*j);

end;

M=Mtau(:,4*m+l:4*m+4);
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%% Forming of the Matrixes for _he B!ockdiagonal system %%

e_Ah=expm(-A*h);

Minv=inv(M);

ZZ=Minv*e_Ah;

W_=e_A/I'*ZZ+Minv;

WL=[W_(2,2)

ZLU=[ZZ(2,2)

ZLL=[ZZ(2,2)

WW(2,4) ;

ZZ(2,4) ;

zz(4,2) ;

'4W(4,2) W'W(4,4)] ;

ZZ(4,2) ZZ(4,4)];

ZZ(2,4) ZZ(4,4)] ;

% Parzitionin g matrixes

WR=[WW(2,1) WW(2,3) ;

Z?.U=[ZZ(2,1) ZZ(2,3);

ZRL= [ZZ(!,2) ZZ(3,2) ;

WZ4(4, I) WW(4,3)] ;

ZZ(4,!) ZZ(4,3)];

ZZ(I,4) ZZ(3,4)] ;

Ulu=[Minv(2,2) Minv(2,4);Minv(4,2) Minv(4,4)];

Uru=[Minv(2,1) Minv(4,1);Minv(2,3) Minv(4,3)];

Vl=[!ambdal a!pha2; beza2 lambda2];

Vr=[O a!phal; betal 0];

o ,u' /ol,Y,,. Forming of the right side of the Blockdiagona! system ""

for i=2:n

0mega(.,i)=ZRL*K(',i-l)-WR*R(',i)+ZKU*R(',i+l);

end;

Omega(-,l)=(Vr-Uru).R(-,l) + ZKU*K(',2);

Omega(. n+I)=ZKL.R(:,n) - (WR-Uru+Vr)*K(',n+l);

%Z Gausselimination to produce upper triangular system %%

DD(:,!:2)=UIu-V!;

for i=2:n+l

zd=ZLL*inv(DD(:,2*i-3:2*i-2));

DD(:,2*i-I:2*i)=WL-zd*ZLU;

Omega(:,i)=Omega(',i)+zd*Omega(:,i-l);

end

DD(:,2*n+l:2*n+2)= (WL-UIu+VI) - zd*ZLU;
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%% Backsubstitution to solve for the xvel Z%

xvel(',n+l)=OD(:,2*n+l:2*n+2)\Omega(:,n+l);

for i=n'-l'l

xve!(-,i)=DD(.,2*i-l.2*i)\(ZLU*xve!(',i+l)+Cmega(:,i));

end;

%% Making of state vectors %%

for i=O:n

x(:,i+l)=[[K(l,i+!)]

[xvel(l,i+l)]

[K(2,i+!)]

[xvel(2,i+l)]];

end;

%% P!otzing of trajector 7

%% and error estimate calculation

sumnorm=O;

hold on

for j=O:m

eAtau=expm(A*j*h/m);

for i=O:n-I

entry=eAtau.(x(:,i+l)+Mtau(:,4*j+l:4*j*4)*Minv*

(e_Ah*x(:,i+2)-x(:,i*l)));

p!ot(enzry(1),entry(3),'.')

if errorcalc "

sumnorm = sumnorm + dist(entry(1),entry(3),i,h);

end;

end;

end;

%% Plotting of the control signals %%

if ctr!sio_nal
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pause, clg

subploz(2,1,1),ho!d on

subplot(2,1,2),ho!d on

for i=O:n-I

for j=O:m

csio_nvec(:,j+!)=B'.expm(-A'*j*h/40)*Minvz

(e_Ah*x(:,i+2)-x(:,i+l));

end;

subplot(2,1,1),plot(i_h:h/m:(i÷l)*h,csigulvec(l,:))

subplot(2,1,2),p!ot(i*h:h/m:(i_l)*h,csiguvec(2,:))

end;

end;

error=sumnorm/n/m;

end;

function [Q,cnt] = quad8mod(F,a,b,tol)

%Alteration of the original zatlab toolbox program. QUADS

% Numerical evaluation of an integral, higher order method.

% Q = QUAD8('F',A,B,TOL) approximates the integ-ral of F(X)

__om A to B to within a relative error of TOL.

% 'F' is a string containing the name of the function.

% The function must return a 4*4-matrix output value if

% given an input value.

% Q = Inf is returned if an excessive recursion level is

% reached, indicating a possibly singular integral.

% QUAD8 uses an adaptive recursive New, on Cotes 8 panel rule.

% Cleve Moler, 5-08-88.

% Copyright (c) 1984-94 by The MathWorks, Inc.

% [Q,cnt] = quadS(F,a,b,tol) also returns a function

% evaluation count.

% Top level initialization, Newton-Cotes weights

w=[3958 23552 -3712 41984 -18160 41984 -3712 23552 3956]/14175;

x=a + (0:8)*(b-a)/8;
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% set up function call

for i=m

y = [y feva!(F,i)] ;

end;

% Adaptive, recursive Newton-Cotes 8 panel quadrature

QO = zeros(4);

[Q,cnt] = quad8stpmod(F,a,b,tol,O,w,x,y,QO);

c_t = c_t + 9;

end;

f-_nction [Q,cnt] = quad8stpmod(F,a,b,tol,lev,w,xO,fO,QO)

%Alteration of the original mat!ab toolbox program. QUAD8STP

% Kec-_rsive function used by QUAD8.

% [Q,cnt] = quadSstp(F,a,b,toi,!ev,w,f,QO) cries to approximate

% the integral of f(x) from a to b to within a relative error

% of _oi.

% F is a string containing the name of f. The remaining

% armaments are generated by quadSmod or by the recursion.

% !ev is the recursion level.

% w is the weights in the 8 panel Newton Cotes formula.

% xO is a vector of 9 equally spaced abscissa is the interval.

% fO is a matrix of the 9 function values at x.

% QO is an approximate value of the integral.

% Cleve Moler, 5-08-88.

% Copyright (c) 1984-94 by The MathWorks, Inc.

LEVMAX = i0;

% Evaluate function at midpoints

% of left and right half intervals.

x = zeros(l,iY);

x(l:2:iY) = xO;

x(2:2:16) = (xO(!:8) + x0(2:9))/2;

f(:,l4) = fO(',l:4);

for i=1"8
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f(:,8"i-3:8"i) = feval(F,x(2*i));

f(:,8.i+1:8.i+4) = f0(:,4-i+1:4.i+4);

end;

% Integrate over half inte_;a!s.

h = (b-a)/16;

QI=O;Q2=O;

for i=1:9

Q1 = Q1 + h_w(i)*f(:,4*i-3:4*i);

Q2 = Q2 + h*w(lO-i)*f(:,69-i*4:72-i*4);

end;

Q = QI +Q2;

Kecursively refine approximations.

if norm(Q - OO) > tol*norm(Q) _ lev <= LEVMAX

c = (a+b)/2;

[Ql,cntl] =

quad8stpmod(F,a,c,zal/2,1ev+!,w,x(!:9),f(:,l:36),Q1);

[Q2,cnt2] =

quad8stpmod(F,c,b,to!/2,1ev+l,w,x(9:lT),f(',33:68),Q2);

Q = Q1 + Q2;

cnt = cnt + cntl + cnt2;

end

end;

function res = integrand(v)

global A B C

e_AvB=expm(-A*v)*B;

res = e_AvB*e_AvB';

end;

function [d]=dist(xx,yy,i,h);

% Initiating search algorithm.
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8.2 Maple Program

w±th(lina!g) ;

with(s_uden_) ;

a!pha!:=!;

a!pha2:=l;

be_al:=O;

be_a2:=O;

!ambdal:=lO0;

lambda2:=lO0;

a:=l;

b:=a;

h:=0.2;

n:=22;

m:=15;

R:=veczor(n+!);.

XX:=z->a.z,Pi-b*sin(_*Pi);

yy:=z->a-b*cos(t*Pi);

for i from 0 Co n

do

R[i+l]:=ma=rix([[XX(-l+izh)],

[YY(-l+i*h) ]]) ;

od;

A:=ma_rix([[ O, I, O, 0],

[ O, lambdal, alphal, alpha2],

[ O, O, O, t],

[ betal, beta2, O, lambda2]]);

B:=matrix([ [0,0] ,[I,0] ,[0,0], [0, I]]) ;

C:=matrix([[l,O,O,O] ,[0,0,I,0]]) ;

alias(id = a*())

Aprim:=zranspose(A);

Bprim:=:ranspose(B);

e_Az:=z->exponential(-A*t);
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e_Aprim¢:=¢->exponen¢ial(-Aprim*¢);

eAt-=¢->exponen¢ial(A_¢);

e_.%h-=e_At(h);

inzesranden: = proc (v)

eva!m(e_At(v) _* B

end;

a* Bprim _* e_Aprimt(v));

inte=_rera -= proc (funk)

global v;

inz(funk,v);

end;

zap(inCegrera,integranden(v));

inzegra!en:--map(simp!ify,");

evaluera'--pro¢ (funk)

global tau;

subs(v=tau,funk);

end;

Mtau.=vec_or(m+l);

Mtau[l] '=mazrix([[O,O,O,O], [0,0,0,0], [0,0,0,0], [0,0,0,0] ]) ;

tau.=O;

MO-=evalm(map(evaluera,in_egralen));

for j from I to m

do

tau:=j*h/m;

Mtau[j+l]:=evalm(map(evaluera,integ ralen)-MO);

od;

M.=MZau[m+l];

Minv:=evalm(inverse(M));

ZZ.=evalm(Minv_*e_Ah);

W_.=evalm(tr_uspose(e_Ah)_*ZZ+Minv);
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WL: =submatrix(W-W, [2,4] ,[2,4] );

ZLU.=submatrix(ZZ, [2,4] ,[2,4] );

ZLL :=zranspose (submazrix (ZZ, [2,4] ,[2,4] ));

W-K:=submatrix('#W, [2,4] ,[I,3] );

ZKU:=submatrix(ZZ, [2,4] ,[1,3] );

ZKL :=¢ranspo se(submaCrix (ZZ, [i,3] ,[2,4] ));

xve! =vec¢or (n+l) ;

xve! [i] :=evaim((K[2]-K[l] )/h) ;

xvel In+l] •=evalm( (K[n+!] -Kin] )/h) ;

Omega: =vecZor (n+!) ;

for i from 2 So n

do

Omega [i] •=ZRL_*R [i-l] -WRk*R [i]+ZRU_*R [i+!] ;

od;

Omega [2] •=Omega[2] +ZLLa.xvel [I] ;

Omega [n] •:Omega [n]+ZLUk*xvel [n+l] ;

DD :=vector(n+l) ;

DD [2] :=WL;

for i from 3 to n

do

zd" =eva!m(ZLL_*inverse (DD [i-l] ));

DD [i] •=WL-zda*ZLU;

Omega[i] :=Omega[i] +zd_-.Omega[i-l] ;

od;

xvel In] •=linsolve (DD [n] ,Omega In]) ;

for i from n-I by -i to 2

do

xvel [i] :=linsolve (DD [i] ,ZLU_*xvel [i+l]+Omega [i]);

od;

x: =vector(n+l) ;

for i from 0 to
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do

x [±+i] :--ma¢rix([[R[±+1] [I, 1]],

[xvel[i+l] [I,I]],

[K[i+l] [2,1]],

[xvel[i+l] [2,I]]]) ;

od;

plotlisZ:=[];

for j from 1 to m

do

tau:=j*h/m;

eAtau:=evalm(eAt(tau));

for i from 0 I:o n-I

do

entry" =evalm(eAZaua* (x [i+ I]+Mtau [j+I] _*Minv

_* (e_Ah_-*x[i+2]-x [i+l] )));

plotlist :={ [entry [l,l] ,entry[3, i]] ,op(plotlis¢)};

od;

od;

plot (plotlist, style=point) ;
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Abstract

When trying to fly an aircraft as smoothly as possible it is a good idea to

use the derivatives of the pilot command instead of using the actual control.

This idea was implemented with splines and control theory, in a system that

tries to model an aircraft. Computer calculations in Matlab shows that it is

impossible to receive enough smooth control signals by this way. This is due

to the fact that the splines not only try to approximate the test function,

but also its derivatives. A perfect traction is received but we have to pay in

very peaky control signals and accelerations.
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2 Introduction

In the beginning our intention was to calculate control laws for an aircraft

model so it would fly as smooth as possible in three dimensions. The comfort

for the passengers was the most important consideration when we forced our

system, the representation of the plane, to follow a certain trajectory.

All the programming has been realized in a numeric computation and

visualization software called Matlab. Also Maple has been used in some

of the heaviest calculations and my third contact with the more advanced

computer world was Latex that this report is written in. The second half of

this paper consists of Matlab code ended with listed references.

The test began in one dimension with three different kinds of systems.

By way of introduction the essential conceptions of teachability and stability

were examined and written down in chapter 3 and 4 respectively. With these

tools we could investigate the main features of the systems and obtained the

result that all of them were completely reachable, stable but not guaranteed

input-output stable (see chapter 5, The Systems).

A spline is the curve of an n-degree polynomial that is joined in its end-

points with similar polynomials. They are connected in the way that they

have the first n-1 derivatives, at the jointly point, in common. Chapter 6

consists of calculations for the spline approximation and the control theory.

Chapter 8, Results, discusses some of the results we received and also

displays examples of graphs that were obtained. The test could not be con-

cluded in the way we thought due to a surprising combination between con-

trol theory and splines. The last two pages in chapter 8 deals with this main
result.
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3 Reachability

When controlling an aircraft we will be sure that a suitable control signal u
can take us to all desirable states. Transfered to our one dimensional case

we have to determine under what circumstances there is an input signal u

which transfers the state from z(to) = z0 to z(t_) = z_. This is a basic issue

in systems theory and it leads to the concept of reachability. We will call a

system completely reachable if it has the property that this can be done in

any positive time for any two points.

Most of the trains of thought in the following proofs are derived from

lecture notes given by Tomas BjSrk, Optimization and Systems Theory, Royal

Institute of Technology, Stockholm, Sweden, during the fall of 93.

Consider the system.

Jc(t) = A(t)z(t) + B(t)u(t); z(to) = Xo.

with the general solution

fx(t) = to)x0+ ¢(t,s)e(s)u(s)ds.
o

In order to reach the desired state x(tl) = zx the following equality must be
fulfilled.

x, = q_(tt,to)xo + ¢(tl,s)B(s)u(s)ds.
o

Define d _= xl - O(tl, to)zo and let U be the space of input signals. Defining

the mapping L : U _ R'* as

Equation 3.1 Lu _ f/_ _(t,,s)B(s)u(s)ds.

It is obvious that the desired state transfer is possible if and only if the

equation Lu=d has a solution, i.e. d EIm L.

It is easily verified that L is a linear mapping, but since it does not

act between two finite-dimensional vector spaces, L does not have a finite-

dimensional matrix representation.

Taylor's 'Introduction to Functional Analysis' helps us prove the following

theorem [Taylor, page 250].

Theorem 3.1 If X, Y are complete inner product spaces and L : X _ Y is

a linear continuous operator then

Im L = Im LL"
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R _ is a Hilbert space but what kind of space is//? Define the inner product
for//as

v), - u(t)Tv(t)dt
0

and it can be proved that//becomes a Hilbert space. The adjoint operator

L" is determined by

(Lu, d)n. = d r ['_ ¢(t,,s)S(s)u(s)ds =
,It 0

Consequently we get

L':R_---* U

and finally

Vu E U, d E R _

as (L*d)(t)= Br(t)_r(tt,t)d

]LL'd= q_(tl,s)B(s)BT(s)c_T(tl,s)ds d
o

We thus have a linear mapping

LL ° : R _ ___,R _

that is given by the symmetric, positive semidefinite n x n matrix.

W(to,t,) = _(tl,s)B(s)Br(s)_r(t_,s)ds
0

Theorem 3.2 We can take a system from z( to) = Zo to z( tl) = x_ if and

only if

d _= zj - ¢(t,,to)zo EIm W(to,t,)

We also have that the control signal u with minimum norm (energy) is given

by

_(t) = Br(t)_r(t_,t)a

there a is just any solution to

W(to, t_)a = d
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Remark 1 The point with the above is that it is much easier to characterize

Im W than Im L, because W is an ordinary matriz.

Proof Let L be as in (3.1)

(if) Suppose first that d E W(to,tt), i.e. d EIm LL', then d = Im LL'a

for some a E R _. Let u _ L'a and we get Lu = LL*a = d. Thus, d EIm L

and the state transfer is possible.

(only if) Suppose now that the state transfer is possible, i.e. d E Im L.

Furthermore, suppose that d _ Im W(to, tl), i.e. d ¢Im LL'. This will

give a contradiction.

Recall that for any matrix A it holds that Im A = (ker AT) ±. Since LL"

is a symmetric matrix, we get d _ (ker LL') ±. This implies that there is a

z E ker LL*, i.e. LL'z = O, such that (z, d)n- _ 0. But, LL'z = 0 implies

that 0 = (z, LL* z)n, = (L'z, L'z),,. Hence, L*z = 0. Now the contradiction

easily follows since

0 # (z,d)n, = (z, Lu)n,, = (L'z, u),, = 0

The final step to prove the optimality of _. Let u be any solution of Lu=d.

Then Lu = L_ so L(u - _) = O. This gives

0 = (a,L(u- 6))n, = (L*a,u- _), = (_,u- _).

Hence, (_, u) = (_, _). We now get by using the Cauchy-Schwartz inequality
that

= u) _< u)

Dividing by (fi, fi)a/2 yields that

(;z, a)lle < (u, u) ll_.

Hence, 6 is optimal. []
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3.1 Reachability for Time-Invariant Systems

For a time-invariant system

= Az + Bu W(to, tl) = eA(tJ-')BBreATOl-')ds
o

the question about reachability is radically simplified.

Definition 3.1 Let (A,B) be a matrix pair, where A is n × n. The teachability

matrix F is defined as

F A [B AB A"-IB]

Theorem 3.3 For all (to, tl) such that to < tl we have

Im W(to, t_) = Im F

Proof I. Im F C Im W

Im F C lm W ¢_ (ker FT) ± CC.(ker wT) ± ¢_ ker W ± C ker F ±

Presume that a E ker W, i.e. Wa=Oso aTWa = 0 and hence it follows that

aTeA(tl-')B = 0 Vs E [to,tt].

Derivation with regard to s a couple of times and s := tl gives

aTB = 0... arAB = 0 ...... aTA n-1B = 0 i.e. a E ker F T.

II. Im W C Im I'

In the same way as above we are going to prove that ker F r C ker W.

Suppose that aTF = O. By Cayley-Hamilton follows

aTAkB = 0 k = 0,1,2,...

Accordingly we have

s k

aTe-A'B _ _.aTA_B = 0
k=O

So it follows that a rW= 0, i.e. Wa=O,i.e. aEker W. D

Remark 2 Since lm F =Im W(to, tl) for any interval (to, t1), we see that

in the time-invariant case the image of the reachability Gramian is inde-

pendent of the interval (to, t1). However, this does not imply that the state

transfer can occur during a fortuitous short time interval.
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Definition 3.2 Let n be the dimension of the state space. The pair (.4,13)

is said to be completely reachable if F has full rank, i.e.

rank F = n

Definition 3.3 The reachable subspace T_ is defined as

[B B]= Im ,AB, A_B,...,A _-_

We easily see that _ is the set of states that can be reached from the origin.

Lemma 3.1 The reachable subspace _ is A-invariant, i.e.

ARcR

In particular, eAtT_ C _ for all t E Fl_.

Proof Since, by the Cayley-Harnilton theorem, A * is a linear combination

of A j for j=0,1,... ,n-1 it follows that

Moreover, by induction we get Ai_ C T_, which implies that

oo t1 .

ea ' R = )--_ -fi. A ' R C_ R 0
j=O

To further clarify the picture we note that if the state of the system is in 7_,

at some instant, it is impossible to steer the state out of 7_. Neither is it

possible to enter T_ from an initial state not in T_. Particularly we have that

if Zo, zt E Tt then the state transfer can occur in just any time t. The points

that can be reached in a time t from a given xo establish the plane

R( zo , t) _= eat zo + R.
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4 Stability

A very essential problem when designing a control system is how to avoid

instability, i.e. that the output increases without limit. The following sec-

tion is a_ abridgement of chapter four in "An Introduction to Mathematical

Systems Theory" by A. Lindquist and J. Sand [Lindquist/Sand]. All theory

dealing with the alternative approach, the Lyapunov equation, is omitted.

Intuitively an input-output system is stable if a bounded input produces

a bounded output or if the output tends to zero, or at least remains bounded,

when the input is zero.

For nonlinear systems, stability in this sense is typically dependent on the

initial conditions and the specific input applied. Hence, in general, stability

is not the property of a system, but rather the property of a solution.

This chapter deals only with the stability of time-invariant linear systems,

a subject which is drastically simplified by the fact that the complete set of

solutions of the system _ = Az can be displayed explicitly by means of the

Jordan form. As a consequence, it is enough to check the eigenvalues of A

in order to determine whether a bounded input produces a bounded output,

and thus it will be meaningful to talk about stable systems.

4.1 Stability of Continuous-Time Systems

We want a bounded input to give a bounded output, which is sometimes

abbreviated as BIBO-stability.

Definition 4.1 The system

{ _(t)= A(t)x(t)+ B(t)u(t)y(t) C(t)x(t)

is input-output stable if there is a k such that

z(to) = o, }Ilu(t)ll_<1 t • [to,_) _ Ily(t)ll_<k, t • [to,_)

for every to.
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Example 4.1

matrices. Then
Consider the time-invariant case, where (.4,13, C) are constant

£y(t) = CeA(t-')Bu(s)ds.

Defining G(t) a= CeAtB,

Ily(t)ll _< Ila(t- s)ll Ilu(,_)llds (since Ilu(t)ll _<1)

</,i' Ila('r)lld_

_ ['-'° ilearlldr,< IICIIIIBII,,o

i.e., a sufficient condition for input-output stability is that the integral
f_ IleA'lldt is convergent. []

4.2 Stability matrices

Let us study the homogeneous system:

Equation 4.1 _ = Az; z(O) = Zo.

Definition 4.2 The system (_.1) is stable if the solution is bounded on the

interval [0, ¢x_) for all initial values Zo and asymptotically stable if x(t) _ 0
when t --_ cx_ for all Xo.

Theorem 4.1 (1) The system (4.1) is asymptotically stable if and only if

the real parts of all the eigenvalues of A are less than zero, i.e. the eigenvalues

are all located in the open left half plane.

(2) The system (_. I) is unstable if A has at least one eigenvalue in the open
right half plane.

Proof In this proof we shall use a fundamental result from linear algebra,

the Jordan decomposition theorem. This theorem guarantees the existence

of a basis for T¢." in which the representation of the linear mapping A takes
a particularly simple form.
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Transform the matrix A to Jordan form A = TJT -l , where J is a block-

diagonal matrix.

J = diag(Jt, J_,..., Jr)

and each d, x d, block J, has the form

J_

Av 1 0

A_ 1

°*, 1

0 A_

A, being an eigenvalue of A. Thus,

e At = T

e 2't 0

eJ2t

°.°

0 e J't

T-1

so it remains to analyze each e J't. But J_ has the form

J, =

where S_ is a shift matrix

0 1 0

0 1

O ..°

"°° 1

00

of dimension d, x d,, having the property that S i = 0 for i > d,. Conse-

quently,

/
e J_t = e)'_te s_t = e :_'t [I + tS + "---S t +.. +

2I- "\

and therefore, setting a_ = ReA, and w_ = IrnA,,
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Equation 4.2 eA' = E, e_"P,(t)(c°sw_ t + sinw, t),

where P,(t) is a matrix-valued polynomial of dimension d_ - I in t. From

this expression it follows that (1) eA*xo---* 0 for all x0 if and only if

a, = Re,k, < 0 for all v and that (2) eAtxo _ o_ for at least one xo if some

a, > O. []

Lemma 4.1 The system in equation 4.1 is stable if and only if all eigenvalues

of A are located in the closed left half plane and any eigenvalues on the

imaginary axis correspond to one dimensional Jordan blocks.

Proof By theorem 4.1 (1) we only need to worry about terms in (4.2) for

which a_ = 0, i.e. e_ = 1. These terms will remain bounded if and only if

the degree of P_ is zero, i.e. dr = I.

Definition 4.3 A is a stability matrix if Re _( A ) < O.

Theorem 4.2 If A is a stability matrix then the time invariant system

{ _=Ax+Buy=Cx

is input-output stable.

Proof If all eigenvalues of A have negative real parts so that all a, in (4.2)

are negative then

f0 IIeAtIIdt <

and hence, in view of example 4.1 the system is input-output stable. []

The last theorem is very important for us because it deals with the kind of

system we use when modeling an aircraft.
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5 The Systems

The test was accomplished with three systems of different kinds. All systems

use a single input and produce a single output, a so called SISO-system.

As we will see later all systems have the necessary property of complete
reachability, as was discussed in chapter 3.

That a bounded input gives a bounded output is sometimes abbreviated

as BIBO-stability. This highly desirable property for a system was discussed

in chapter 4 and will be further examined for each specific case.

5.1 Transfer Functions

This subject is discussed in Etkin's book "Dynamics of Atmospheric Flight"
[Etkin, page 50-51]. He writes

System analysis frequently reduces to the calculation of system

outputs for given inputs. A convenient and powerful tool in such

analysis is the transfer function, a function G(s) of the Laplace

transform variable s [Complex valued], that relates input u(t) and
output y(t) as follows,

C(s) = _(s)/,_(s)

where (-) denotes the Laplace transform. So long as u(t) and
y(t) are Laplace transformable the transfer function defined above

exists. However, it will in general be a function of the initial

values of y and its derivatives, and moreover, for nonlinear and

time varying systems, of the particular input u(t) as well. Such

a transfer function is of relatively little use. We can however

obtain a unique function G(s) if (I) the system is linear and time

invariant, and (II) it is initially quiescent, i.e. at rest at the origin
in state space with no inputs.

He continues,

When u(t) and y(t) are zero for t < 0, the Laplace and Fourier

transforms are simply related, i.e. a(iw) = U(w). It follows that

G(ioa) = Y(w)



5 THE SYSTEMS 15

Sometimes it is G(iw) that is called the transfer function.

When examining different transfer functions in a Bode diagram it shows

that there are systems with the same absolute value curve but with different

phase curves. Of all systems with the same absolute value curve there is

one with less negative phase advance, it is called a minimum phase system
[Glad/Ljung, page 109].

I give the following theorem without a proof.

Theorem 5.1 A theorem with a rational transfer function is in minimum

phase if and only if it has neither poles nor zeros in the open right half plane.

The others are called non minimum phase systems. This distinction is very

important because we know from one dimensional control theory that a sys-

tem with zeros in the numerator will start off in the opposite direction. This
bad quality can make the system difficult to control.

A A-value less or equal to zero are assumed in the following calculations.

5.2 System 1

I°1] I0] Jz= 0 A z+ 1 u y= 1 0 z z=

gives the system dynamics ff = Ay + u

The reachability matrix

F__I01 _1]

has full rank for all lambda and the system is therefore completely reachable.
System l's transfer function

1

Y(s) - s(s- _) U(s)

without neither poles nor zeros in the open right half plane indicates that it

is a minimum phase system and should therefore be easy to control.
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The Jordan transform of the matrix A is P-l jp where

Because all eigenvalues of A are located in the closed left half plane and the

eigenvalue on the imaginary axis correspond to an one dimensional Jordan

block we know that the system is stable. Owing to this quality we axe guar-

anteed that when a fortuitous in signal ultimately equals zero, the solution

to the system _ = Ax is bounded on the interval [0, e_). This of course im-

plicates that also the output is bounded. Referring to previous theory the

eigenvalue on the imaginary axis prevents input-output stability.

5.3 System 2

0 1 0 0

0 A1 1 0

0 0 0 1

0 0 0 A2

x+

0

£
W

0

1

U

gives the system dynamics _ = A1 fl + u + ew

The reachability matrix

p

0 e eA1 cA12 + 1

e cA1 eAl_+l eA3-bAI-bA2

0 1 A2 X22

1 A2 A22 A2 3

has full rank for all values on A and e and the system is therefore completely

reachable.

System 2's transfer function

es _ - eA2s + I

Y(s) = s_(s_ A1)(s - A2) U(s)

gives for negative A's that there axe no poles in the open right half plane.

The numerator es _ - eA2s + 1 = 0 give the solution

A2_k_A_e_ 18=--_- £
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This implies for a negative e that we have a zero in the open right half plane.

As A2 always is below or equal to zero the poles for a positive e are in the

left half plane. So the system should be easy to control for a positive e and
probably more difficult for a negative value on the variable.

Taking the Jordan transform of A gives that J equals

A2 0 0 0]

0 A1 0 0

0 0 0 1 "

0 0 0 0

Carrying through the same discussion as for system 1 we see that system 2

has the same properties, stable but not guaranteed input-output stable.

5.4 System 3

[010001[0] j ()0 A1 1 0 0 e _)
0 0 0 1 0 z+ 0 w V = 1 0 0 0 0 z z= u

0 0 0 0 1 0 t_

0 0 0 0 A2 1 /i

gives the system dynamics _ = A1/)+ u + ew
The reachability matrix

_i'= A2fi" + w

I O e cA1 eA12 cA13 + 1 ]

e cA1 eA12 cA13+1 eA 4+Al+A2

0 0 1 A2 A22

0 1 A2 A22 A23

1 A2 A22 A23 A2 4

has always full rank and the system is therefore completely reachable.
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System 3's transfer function

esS-eA2s e+ 1

r(s) = s'(s_ _ (al + a2)s + al • ae) U(s)

can be examined by Routh's algorithm. The numerator es s - eA2se + 1
gives the following tableau.

-eA2 1

l/A2 0

1 0

As A2 always is below, or equal to, zero we get for a positive e that the left

side coefficients e > 0 -cA2 > 0 1/A2 < 0 1 > 0 change sign two times.

This indicates that the system has two zeros in the open right half plane for

a positive e. The same calculations for a negative e gives that the system has
one zero in the open right half plane.

The solution to the denominator

sS(s _ -- (A1 + A2)s + A1. A2) = 0

gives that for all negative values on A1 and A2 we have three zeros on the

imaginary axis and two zeros in the open left half plane. If either A1 or A2

equals zero we get four zeros on the imaginary axis and one in the open left

half plane. When all eigenvalues equal zero we get of course all zeros on the
imaginary axis.

All this together gives that system 3 never will be a minimum phase
system and will therefore be more difficult to control.

Taking the Jordan transform of A gives that J equals

A2 0 0 00]

0 A1 0 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

and this implies that system 3 is stable. The always present eigenvalues that

equal zero prevent the system to be guaranteed input-output stable.
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6 Derivations

The fundamental idea of the test was to simulate an aircraft that is directed

by the flight control to follow a certain path. The given trajectory can be

seen as a set of points that shall be passed at a certain time. By way of

introduction our intention was to determine how exact a given path in three

dimensions could be tracked with maintained comfort for the passengers.

Priority one was to minimize the acceleration and thereby the stress to the

individuals.

To start with, the test was accomplished in one dimension. This sim-

plify the calculations radically and is a common approach to such experi-

ments. Given the set of points {y0, yl,..-, Y,,} and the corresponding time

{to, t_,..., t_}, we would like to perceive the control laws {u0, u_,..., u,,__}

that take the system through the points in such a pleasant way as possible.

Consider the control uk that takes the system from state vector zk to

Xk+l •

u_ : tk tk+l

Because t E [tk, tk+l] the state of the system will be

x(t) = eA(t-t_)xk + eA(t-')Buk(s) ds
k

and as the state of the system is xk+l at time tk+l we receive the condition,

Equation 6.1

tk+lx_+l -- eA(t_+1-tk)xk -t-
ot k

eA(_k+ I -') Buk ( s)ds.

The solution uk to equation (6.1) that minimizes the energy of the control

signal is then given by, see chapter 3.

Equation 6.2

)-'uk(t)=Bre -ATt '_+ e-A'BBTe-AT'ds (e-Atk+IXk+,- Zk)
\d tk
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That would be very convenient if the integral in equation (6.2) could be
simplified in any way.

We can see our flight path as the aircraft is flown through a large number

of points by an autopilot. With a specific time interval the plane receives a

correction signal that makes the vehicle track the path with high accuracy.

The time interval tk+l - tk are constant and determined by the frequency
the automatic pilot works with.

Assumption 6.1 Let tk+l - tk = h.

Assumption (6.1) can be used to simplify the integral in equation (6.2).

_ktk+1e-A'BBTe-AT*ds = {r = s -- tk} =

e -A*k afoh e-ArBBTe-Arrdr

matrix constan_

e-ATtk

Definition 6.1

j_o hM _ e-arBBTe-ATrdr

The equation (6.2) can be rewritten as

Equation 6.3

uk(t) = BT e-AT(t-tk)M-,(e-AAzk+, _ Zj,)

The control would be specified completely by (6.3) if the whole state vector

at each interpolation point was known. As only the points (Yo, yl ,..., y,) are

known we have to apply some kind of conditions on the equation to obtaina solution.

The control u is the actual control that the pilot or the auto-pilot achieve.

A very natural choice is therefore to require that the control u is continuous.
Assumption 6.2

=
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By this we acquire (n-l) conditions and allow us to write

uk(tk+, ) = U_+l(tk+, )

BT e-ar_M-' (e-ah zk+j -- zk ) = BT M -l (e-ahzk+ t -- z,+, ).

This equation can be simplified by

Definition 6.2

Z A___M-I e-Ah

W _= e-aThM -I e -ah + M -I

21

and finally we obtain the modified expression

BT(zTxk -- Wzk+l + Zz_+,) = 0

Written in block diagonal form it becomes,

Equation 6.4

k=O,l,...,n-2.

B T

Z T -W Z ... 0 0 0

0 Z T -W ... 0 0 0

: : : ".. : : :

0 0 0 ... -W Z 0

0 0 0 ... Z T -W Z

XO

Xl

X2

.

Xn--2

Xn--1

Xn

=0

As our three systems are very different the calculations will differ from here

and all further computations have to be treated separately.



6 DERIVATIONS 22

6.1 System 1

This is the original system that was first implemented in Matlab. Each state

vector zk consists of two parts, a known coordinate yk and an unknown ve-

locity Yk. By partitioning the matrixes in definition 6.2 as

z[zllzl ]   =[zllz21]w[wllw12]Z21 Z22 Z12 Z22 W21 W22

and using the notations given in the following definition, the unknowns can

be kept on the left hand side and the given position coordinates can be moved

to the right hand side.

Definition 6.3
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We get the system

z,_ -w,_ z,_ ... o o o
o z,_, -w,_... o o o
: : : ".. : : :

o o o ...-wf z_ o
o o o ... z# -w,Bz_

• o

Yo

Yl

Y2

i 'n-2

' rnD 1

fin

-zZ w2 -zT_ ... 0 0 0
0 -z_ w2 ... 0 0 0
: : : ".. : : :

o o o ... w2 -z_. o
o o o ...-z_ w_ -z_

Yo

Yl

Y2

y,,-2

Y,,-1

Y_

The right hand side consists of known parameters and is therefore a constant

vector. Our system has (n-t-l) unknowns but only (n-l) equations so we need

two more constraints•

After reading Per Enquist's paper "Control Theory and Splines, applied

to Signature Storage" [Enquist] I decided to use the natural boundary con-

ditions, y0 = 0 and _/_ = 0. This can be seen as a very real behavior for a

vehicle and has also given the best results in former experiments. Enquist

writes "This will let the initial direction and constant velocity of the system

be decided so that the control energy is minimized" [Enquist, page 16-17].

The system dynamics equation _ = A_ + u gives

_yo + uo = 0 where uo = BT M -I (e-Ah xl -- xo) = BT zzl - BT M-' xo •

Definition 6.4

uB _ BT [ m'_¢m_¢m_m_ ]
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We get

v:) +z,".i,, "- = v_vo - z_v,

The system dynamics equation together with earlier definitions give

_I. + u,,_t(t,,)= 0 where u,__,(t,,)= B re-AThM -t (e-Al'z,, --z,,-t) =

BTe-ATI_zx,, _ BT e-.4ThM-t x,__ 1 = BTwxn -- BT M-t x,_ _ BTzTx,z_t

We get

+ (, + wp u,.") , " w.")- = Z¢ty,,-t + (U.f, - y,_

Add these two equations to our considered system and the number of un-

known parameters equals the amount of equations. Thus is the problem

solvable and the Matlab program that uses Gaussian elimination is displayed
in mprl21der0.m.

6.2 System 2

By this system a new approach was introduced for the convenience of the

passengers. Instead of direct using the performed control signalu we use its

derivatives to control the aircraft. The formula _ = )_2_ + w gives the con-

nection between the control u induced by the pilot and the artificial control

w that actually flies the plane.

Each state vector xk consists of the known coordinate yt and the unknown

parameters, velocity 9_, control signal uk and its first derivative _it. As we

have (n+l) state vectors and each state vector consists of three unknowns

it becomes a total of 3(n+l) unknown variables. The constraint that we

require the control signal u to be continuous gives only (n-l) conditions. If

the restrictions are introduced that also _i and _ have to be continuous, we

get further 2(n-l) conditions.

Assumption 6.3

r,_(t_+,) = ,i_+_(tk+,)

iik(t_+,) = iik+,(tk+,)
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Applying this to equation (6.3) becomes for the first condition

BT A r (zTxk -- Wx_+t + Zx}+_) -- 0

and for the second condition

BT AT A T (zTzk -- Wzk+1 + Zzk+,) = 0

By partitioning the matrices in definition 6.2 as

Z13

Z23

Z33

Z43

W

Zll Z12

Z -_ z21 z22

z31 z32

z41 z42

z14

z24

z34

z44

Wll

w21

w31

w41

zT_

w12 w13

w22 w23

w32 w33

w42 w43

k _ O_..._n m _

k= O,1,...,n- 2.

Zll Z21 Z31 Z41

Z12 Z22 Z32 Z42

Z13 Z23 Z33 Z43

Z14 Z24 Z34 Z44

el4

W24

W34

W44

ewes + W_s cw_._ + w_]

_ze_ + z_]

_z_e + z_t ]

column.

Definition 6.5

Continuous control signal, u:

Wt o = Sr[w._

z, =
Z,f =

w.s w._] = [cw_, + w_e

Wfl = BT[w.,] = [ewe1+ w_,]

= B [z.l]= +

Z_ -- Br[z,.l = [ez,e + zu]

and using the notations given in the following definition, the unknowns can be

kept on the left hand side and the given position coordinates can be moved

to the right hand side. The matrix notation . symbolizes a whole row or
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Continuous first derivative of control signal, fi:

l_t B -- BTAT[w., w.s to.Z]= [ew,_. +eAlwt_ T wst + Aew_t

ewts + eAiw_s + Wss + AeW_s ew_ + eAlw_t + Ws_ + A2w_]

26

eZls +eAlz,s + Zss + A2Z_s ezj_ + eAlze_ + zs_ + A2z_]

Zt B = BT AT[z,. zs. z._.] = [ez, l + eAlz** + z,s + A2z_ t

eZst + eAlzs, + Zss + A2Zsz ez_t + eAIz_, + z_s + A2z,4]

I_ = BTAT[w.,] = [ew, l +eAlw_, + Wst + A2w4,]

Z_ = BrAr[z.t] = [ez_l + eAlze_ + zsl + A2z4t]

2_ = B rAT[z,.] = [ez,, + eAlz,_ + Z,s + Aez,,]

Continuous second derivative of control signal, ii:

Wt B= BTATAT[w.e W.s w._]=

[eAlw12 + (eAl* + I)we, + A2Ws, + A2*w_

eAlwts + (cA1 _ + l)w_s + A2Wss + A2_W_s

eAlwt_ + (eAI* + 1)w_,_ + A_Ws_ + A_w_]

Z_ =BrATAT[z.e Z.s z._]=

[eAlzt_ + (cA1 _ + 1)z_, + M2z_, + A_e z_

eAlzts + (eA1 _ + 1)Z_s + A2Zss + A$*Z_s

eAlz_ + (eAl* + I)z_ + A2zs_ + A_z_]
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2ff =BTATAT[z,. zs. z_.] =

[eAlz, t + (eAI* + 1)z** + A2Z_s + A2* z_

eAlzst + (cA1 _ + I)zs_ + A2zss + A2*Zs_

eAlz,_ + (e,_l _ + 1)z** + A2z, s + A2*z,_]

IT_fl = BTATAr[w.2 ] = [eAlwH + (eAI_ + 1)w_, + A2Wst + A2*w_]

Z,._ -- BTATAT[z.I] = [,Alz, t + (cA1 _ + 1)z,1 + A2z,_ + A2*z_t]

2_ = B TA TAr[z,.] = [eAlz,, + (cA1* + l)zl, + A2z_s + A2"z241

We get the following systems, written in block diagonal form•

Each state vector is divided into two parts, a known portion x_' which

contains the given position y_ and an unknown portion x_ that contains the

parameters _)_, uk and fi_. All right sides consist of known variables and are
therefore constant vectors.

Continuous control signal u:

z,f -wf z_ ... o o o
o z# -wf ... o o o
: : : ".• : : :

o o o ...-wf z_ o
o o o ... z# -wf z_

x_
tl

X 1
tP

X 2

tJ

gn-2
t/

'_n--1
u

Zn

-z_ wf -z,_ ... o o o 3
o -z_ wf ... o o o I
• : . ... : : : I
o o o ...w2-z_ o_
o o o ...-z_ wf-z'_ J

r x_

x_

;Tp
r_-_

X p
n-1

x_
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Continuous first derivative of control signal, fi:

z#_w,_ z_ ... o o o
o z# -w?... o o o
: : : ".. : : :

o o o ...-w,_ z_ o
o o o ... z# -w,_z_

-z8 w_ -2_,, ... o o o
o _z8 w? ... o o o
: : : ".. : : :

o o o ... wZ -,_ o
o o o ...-z_ w_-z_,

Continuous second derivative of control signal, _:

_#-#? 2_ ... o o o
o _# -#P... o o o
: : : ".. : : :

o o o ...-_,_ 2_ o
o o o 2# -_v? TM• ° . Zlu

-_ _v2 -_, ... o o o
o -_ _v_ ... o o o
: : : ".. : : :

o o o ... _2 -2_, o
o o o ...-2_ e¢_ -2_o

_ 1

r[ 'I

iJ"_n-1

Tn

x_

Xn-2
P

Xn-1 ]

X o

X 1

x_
: =

_-2

x_
x';
x_

X p

P
Xn-1
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Having totally 3(n+l) unknowns but only 3(n-l) constraints we chose to

enter differential approximations for the first and last state vector, this will

decrease the number of unknown parameters by six and thus make the prob-

lem solvable. Remember that the time interval t_+l - tk is constant and

represented below as h.

The needed velocities are approximated as:

00 - Yl - Yo
h

y. -- y" - y_-i
h

The needed control signMs are approximated as:

01 - y_ - yl
h

0.-1 -- y.-i - y.-_
h

00 - 31
U0 -- h

u. _ h

The needed first derivative of the control signals are approximated as:

h

h

31 -
Ul -- h

_Lu-I _ h

U 0 -- U 1
u0

h

_ _ Un-I -- Un
h

The Matlab program that solves the task for system 2 using Gaussian elim-

ination is displayed in mprl41knovel.m.
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6.3 System 3

This system uses the same approach for the convenience of the passengers

as system 2 does. The only difference is that we now also use the third

derivative of the control signal u to actually fly the plane. The formula

ii'= A2_I + w gives the connection between the control u induced by the pilot

and the artificial control w that actually flies the plane.

Each state vector xk consists of the known coordinate yk and the unknown

parameters, velocity yk, control signal uk, its first derivative _ik and its second

derivative ii6. As we have (n+l) state vectors and each state vector consists

of four unknowns it becomes a total of 4(n+l) unknown variables. The con-

straint that we require the control signal u to be continuous gives only (n-l)

conditions. If the restrictions are introduced that also d, _ and ii" have to be

continuous, we get further 3(n-l) conditions.

Assumption 6.4

) = )

ii_,( t_+l ) = iik+l ( tk+l )

ak (tk+l )

Applying this to equation (6.3) becomes for the first condition

BTA T (ZTzk -- Wzk+1 + Zzk+e) = 0 k = O, 1,...,n - 2,

for the second condition

BTATA T (ZTzk -- WZk+l "]" Zxk+e) = 0 k = O, I,..., n - 2

and for the third condition

BTATATA T (zrx -- + Zzk+ ) 0

By partitioning the matrices in definition 6.2 as

k = O, 1,...,n- 2.

Z

Zll Z12 Z13 Z14 Z15

Z21 Z22 Z23 Z24 Z25

Z31 Z32 Z33 Z34 Z35

Z41 Z42 Z43 Z44 Z45

Z51 Z52 Z53 Z54 Z55

zT___

Zll Z21 Z31 Z41 Z51

Z12 Z22 Z32 2"42 Z52

Z13 Z23 Z33 Z43 Z53

Z14 Z24 Z34 2'44 Z54

Zls z25 z35 z45. Zss
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W

Wll W12 W13 W14 W15

W21 W22 W23 W24 W25

W31 W32 W33 W34 W35

W41 W42 W43 W44 W45

W51 W52 W53 W54 W55

and using the notations given in the following definition, the unknowns can be

kept on the left hand side and the given position coordinates can be moved to

the right hand side. The matrix notation, symbolizes a whole row or column.

Definition 6.6

Continuous control signal, u:

Wt B = Br[w._

Zf.=Br[z,

Zff = BT[z_. Zs. z,.

W.S W.$ w.5 ] -_-

ew_ + ws_ ew_ + ws_]

zs.] = [eze_ + z,s ezs_ + Zs5 ez_, + z_

W 2 = Br[w.,] = Jew,, + w,,]

= Br[z.,] = [,z,, + z,,]

Z_ = Br[z,.] = [ezx, + z,,]

Continuous first derivative of control signal, it:

l;VtB = Br Ar[w._ W.s w._ w.5] = [ew, e + _Alw_ + w_e + _ew,e

eWls + _Alw_s + w_s + _2wss ew_ + eAlw_ + w_ + A2ws,_]

Zi 8. = B r Ar[z.e z.s z._ z.,] = [ez,, + eAlz** + z,_, + Aez,,

ez_s + eAlzes + Z_s + A_Z_s ez_ + eAlz,._ + z_ + A_Zs_]

Zt B = B TAT[z,. zs. z4. z,.] = [ez,, + eAlze2 + z,4 + Aez,,

eZs_ + eAlzs, + zs_ + A_zs_ ez,_ + eAlz,, + z** + A$z_]
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I2¢_ -- BTAT[w._] = [ewtt +eAlw, t + w,l + _2w5l]

2._ = B r AT[zt.] = [ezt, + eAlzt, + zt_ + A2z,,]

Continuous second derivative of control signal, ii:

l_t B = B T A r A T [w.e w.s w._ w.5]=

eAlwts + cAle wes + Wss + ,k2W_s + ._2_ Wss

e)_lw_a + e,_l_wea + ws_ + A2w_ + A2* wa_]

2t_ = BrArAr[z.e Z.s z_ z.5] =

[e,_Izt, + e_le zee + zs_ + ,_2z_2 + _2t'zs,

*Alzls + eAlezes + zss + A2z_s + A2* Zss

eAlz,_ + eAl* z,_ + zs_ + A2z_ + A2ezs,]

Zff = BTATAT[z,. zs. z,. zs.] =

[eAlz,, + e._l*z,, + zes + A2z_ + ._2*z_s

eAizs, + _I _ za, + zsa + )_2za._ + A2 _ zaa

_Alz_, + e_le z4_ + Z_s +/_2z4_ + ,_2* z_]

(/Vfl = BrArAr[w.,] = [e_lwt, + e,_l*we_ + ws_ + _2wzt + _2_wst]

2_ = BrArAr[z.,] = [eAlz, + eAlez_, + Zs, + A_z_, + A2tz5,]

Z_ = B T A TAT[z,.] = [eAlz, + eAlez,, + Z,s + A2z,_ + _2 _ z_]
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Continuous third derivative of control signal, "fi':

•..B TATA TWj = B TA [w._ W.s w._ w.s]=

[eAIewle + (eAl s + l)we_ + A2Ws_ +,_2_w_e + A2S wse

eAl_wls + (cA1 s + I)wes + Aewss + Ae_ w_s + A2S wss

cA1 _ (eAl s

°°oB

Zt,=BTATATAT[z.e Z.s z._ z.s]=

[eAlezle -I- (cA1 s + 1)zee + A2Zs_ + A2ez_ + A2S zse

eAle zxs + (eAl s + 1)Zes + A2Zss + A2_ Z_s + A2S zss

eAle zxz + (eAl s + 1)ze_ + A2Zsz + A2_ zz_ + A2S zs_]

Zu ='''BBrATATAT[ze. zs. z_. z_.] =

[eAl*z,l + (eA1 s + 1)ze2 + A2z_s + A2_ z,_ + A2Sz, s

eAl_-zsx + (cA1 a + 1)zs_ + A2zss + A2_ zs, + A2S zs5

eAlez, l + (cA1 s + 1)z_e + A_Z,s + A_ez,_ + A_Sz,_]

.°°B

W_ = BTATArAT[w.,] =

[eAl_w, + (eAI s + 1)w_ + A_Ws_ + A_ _ w_ + ,X2s w_l ]

°°.B

Z_= Br Ar AT AT[z.I] =

[eAl'z,, +(eA1 s + 1)ze, + A2Zsx + A2ez_, + A2Szs,]

°°.B

Z,t= BTATATAT[z_.] =

[eAl * z,, + (eAI s + 1 )zl, + AP,z,s + A,_' z,_ + Ae a z,,]
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We get the following systems, written in block diagonal form.

Each state vector is divided into two parts, a known portion z_' which

contains the given position yk and an unknown portion x_ that contains the

parameters _}, uk, fik and u'k. All right sides consist of known variables and
are therefore constant vectors.

Continuous control signal u:

z#-w? z_ ... 0 0 0
0 z,,_ -wp... 0 0 0
: : : ".. : : :

o o o ...-w? z_ o
o o o ... z# -w?z_

x_

I1

_n-2

v
r,n_ 1

11

X n

-zZ w?-z_ ... o o o
o -zZ w? ... o o o
: : : ".. : : : i

o o o ... w? -z'_ o I
o o o ...-z_ w? -z_ 1

x';

P
Xn-2

P
T,n- 1

z_
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Continuous first derivative of control signal, fi:

2,_,-¢¢," 2_ ... o o o
o 2,_, -wf ... o o o
: : : ".. : : :

o o o ...-wf z_ o
o o o ... 2,_: -_'f 2_

x_
x_
x_

X u

X v
n,-1

tl

T, n

-zZ w_ -2_.... o o o
0 -2_ w2 ... 0 0 0
: : : ".. : : :

o o o ... w_ -z_ o
o o o ...-2_ ,_ -27°

Continuous second derivative of control signal, if:

x_

P
Xn-2

X p
n-1

z_

2?,-_f _ ... o o o
o 2_ -_f ... o o o
: : : ".. : : :

o o o ...-_f 2_ o
o o o ... 2,f -_f2_

l]

X 1
_J

T, 2

Xn-2
u

X,n_ 1
u

X n

o -2_ _f ... o o o I
I

: : : "'. : : : I

o o o ... _ -2_'o o
o o o ...-2_ _-2_o

x_
x';

X p
n--'2

P
Xn-1

x_
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Continuous third derivative of control signal, ii':

• ..B .--B .--B

Zu - Wt Zl_
•-.B ..-B

0 Z, - W_

: : :

0 0 0

0 0 0

... 0 0 0

... 0 0 0

• .. : : :

•.. B ...B

• .. - Wt Zt,, 0
•..B ...B ...B

• .. Zu - Wt Z,,

11

_n-2
v

Zn-I
11)

r n

•.-B ...B ...B

-Z_ W_ -Z_ ... 0 0 0
•--B ...B

0 - Z_l Wr ... 0 0 0

: : • ... : : •

• .-B .--B

0 0 0 ... W_ - Z_, 0
•..B -.. B ...B

0 0 0 .-. -Z_I W_ - Z_._

Xo

xP_2

XPn_I

Having totally 4(n+l) unknowns but only 4(n-1) constraints we chose to

enter differential approximations for the first and last state vector, this will

decrease the number of unknown parameters by eight and thus make the

problem solvable. Remember that the time interval tk+l - t_ is constant and

represented below as h.

The needed velocities are approximated as:

!)- -- y" -- Y.-Z
h

The needed control signals are approximated as:

_]n--1 "'" Yn-I --Yn-e
h

flo-
UO _ h
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Yn-- I -- On
Un

h

The needed first derivative of the control signals is approximated as:

h

_).__ = Y.-_ - Y.-s
h

h

Un_ l -_
h

UO -- uO -- ul

h

?_n -- Ur,-I -- Un
h

The needed second derivative of the control signals is approximated as:

ys - ys -- Y_
h

_/,,-s = Y_-s - Y,,-_
h

- ils
U2 -- __

h

Un_ _ =
h

itt- u_ - u_
h

• 72n--2 -- Un_ 1
_n--I =

h

(_o - fit
iio-

h

h

The Matlab program that solves the task for system 3 using Gaussian elim-

ination is displayed in mprl51knovel.m.
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7 The Test

The test was effected by forcing the current system to run through points

situated on the curve we wanted to track. This denotes that the trajectory

has total freedom between the fixed coordinates as long as it passes through

the test curve dots. How close the system followed the test curve was mea-

sured at five additional points between each two fixed coordinates. All these

extra measuring points, along the curve, were added by their absolute value.

The sum of all these measurements is called total-error.

Point-error shows how precisely the system tracks the fixed coordinates.

During all the trials, this value always been zero, i.e. perfect tracking. The

only fixed coordinate that the system does not run through is the end point.

It is due to the lack of constraints there and its divergence is measured by

End-point-error.

7.1 Test curves

Three different kinds of test curves with diverse characteristics were used.

The two standard curves are one period of the sharply curving sine function

and the soft curving function, the hyperbolic tangent. A discontinuous step

function was also used in the test, (see below).

Or_ dent Irq: mpr1210ieKI.m lambda. -I n - 10
12 ......................... _ .......................... _....................................

o.,.................i.........!.........;.........)...../!........i........i.........;.........i
0.$ ......... _............................ , .............. Z. ............................................

0.4 ..................... .................. "......... !........ ' .......... • ...................
:

O.,l ..................... , ...................................
::

-0.2 012 014 i i I i ,0.8 0m.8 , 1'.2 1.4 118 1.8

Tolale_'or:3.S66 Poinlwror:0 Graph:3 TIn_l

Figure 1: The step function tracked by system 1 with ,k=0.
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Ono dim. lrq: mw121deeO.m lam_bda, -1 n-2S
0.2

0.15

0.1

0.05

j.
I I I I I I

-0.0 0 1 2 3 4 5 8

Tolalm'ror:O.O04919 Pointen, or:O _:3 7]met

Figure 2: The sine function tracked by system 1 with A=0.

1

0.8

0.6

0.4

0.2

o

-0.2

--0.4

-0.6

-0.8

i

-1
0

One dim. traj: mpr121dmO.m _. -I n - 20

, i | I I I I I I

0.5 1 1.5 2 2.5 3 3.5 4
Total error : 0.00375 Point error : 0 Graph : 3 Time t

Figure 3: The tangent hyperbolic function tracked by system 1 with A=0.
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8 Results

In this chapter we are going to look at the output from our systems. The

following figures are exactly like those shown on the computer screen.

At the top left of the graph the program used is exhibited. At the top right

are the values of A1, ll, _2, 12, and e, ep, shown together with the number

of points, n, used to determine the test function.The scale of the y-axis are

indeterminable but can give a hint about the ratio between variables of the

same kind. Which quantity the plot gives information about is displayed to

the left of the axis. At the bottom is always the time axis, scaled in seconds,

displayed jointly with the calculated errors, see chapter 7.

At first the difference between system 1 and the other two systems will

be shown. The two systems can be represented by system 3 since they have

about the same behavior for this choice of parameters. Notice the sharper

look of system l's control signal u and acceleration, the latter has less maxi-

mal deviation in both graphs. System 1 can not be affected in the same way

Onedlm. traj:mprt21de¢O.m lambda--1 n.26
0.4 .................................................. • ................................................

0.3 ............ : ............... : ............... v ............... : ................ : ............... :

0.2................. i....... _-...............i......... :_...............

o.,................ i...............i

-_.1 ............... i................. i............... i................ i

-o.2 .............. - ............... i........... i................ i............... i

0 2 3 4 5 8
Tomlerror:O.OO4B19 Polntetror:O Graph:l "rimer

Figure 4: Sine tracked by system 1.

as the other two systems. Due to this it is not so very interesting and will

therefore from now on be omitted.
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Ormdim. traJ:m_lSlknmm4.m I1--1 12--lep.0n-2B
0.4 .............. °................ • ................. •.............. , ................ * ............... •

0.3

0.2

0.1

6

CS u
ACC 0

-0.1

-.O.2

-0.3
0 I 2 3 4 S

TolaJ error : 0.00_882 Point error : 0 Graph : 1 Time t

Figure 5: Sine tracked by system 3.

System 2's behavior when tracking the soft curving function tangent hy-

perbolic is shown below. The first graph shows the smooth behavior for the

system when e = 0. The other two indicate a more uncontrolled fluctuation

for an c _ 0. The second and the third test are done with different c so the

received maximum deviation for the acceleration felt by the passengers are

of the same magnitude. The acceleration is at the bottom except when it is

oscillating heavily as in the last two plots.

Opposite the analysis made in chapter 5 it seems as though system 2 is

not as easy to handle even for an e > 0 and its oscillations for _ < 0 are

apparent.

In two plots some parts of the curves are omitted. This is to prevent the

large deviation of the acceleration at the endpoints to suppress other impor-

tant information. However, this makes a correct error estimation impossible

and the displayed values on the total error for these plots are wrong. The

true value on the total error is 0.0997 for figure 7 and 0.1967 for figure 9.

The last mentioned plot shows the influence of a changed value on A2. It

increases the magnitude and shifts the oscillating acceleration to an earlier

time interval. For both systems it is true that _1 affects the behavior much
more than what _2 does.
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O_edlm. traj:mprl41knoveLm I1 .--0.1 12.--0.2ep.0n-20

1 ........... : ............ :"........... : ............ : ........... :........... ':............ : ........... "-

0_ ...........i............i...........i............i............i...........!......... i...........i

0.6 ............i............ i........... _............ i............ i.......... :............ }........... i

o............_.... : ..........i...........i ........i............i...........i

o:.... i....................i............!...........i

-o.s ...........i............ i ......... i............ ::............:,............i............ )........... i

4.8 .......... : ......... ::........... !............ "........... :_............::............ ::........... i

-1
0 0.5 1 1.5 2 2.5 3 3.5 4

Tomlerror:0.004263 Po_nlen_r:0 Greq_:l T_et

Figure 6: Tangent hyperbolic tracked by system 2.

Onedm. vaJ: mp,-141knovelJn I1 --0.1 12--0.2ep.-0.01 n,,20

1 .................................. .......................... : ........... . ............ : ........... :

0 0.5 1 1.5 2 2.5 3 3.5 4

Toted error : 49.9e Polrl error : 1.779 Graph : 1 Time t

Figure 7: Tangent hyperbolic tracked by system 2.
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Onidtm. lraJ:mw141knovel.m I1 =-0.1 12 ,, -0.2 ep ,, 0.006 n = 20

0.5 1 1.5 2 2.5 3 3.5 4

Tol/error:0.03649 Potnterror:0 Graph:l "l'lmel

Figure 8: Tangent hyperbolic tracked by system 2.

One dim. trilj: mpr1411¢lovel.m I1 - -0.1 12. -2 ep = 0.006 n = 20

8 r .......... ,............. : ........... , ............ :............ :........... ,............. : ........... ,

,t........_J............i...........i............i......................i............i...........i
'=i:_._ !; _ ; i i i i

-::'iliti.....7V............v......................
• i::
• : • :

Tiv ......._..........................................................................
I I I I I I I I

0.5 1 1.5 2 2.5 3 3.5 4

Tolalerro_:53.59 Polniei'ror:0.9051 Graph:l Timel

Figure 9: Tangent hyperbolic tracked by system 2.
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System 3's conduct for A1 = A2 = -1 and varying values on e, when tracking

the tangent hyperbolic function, is shown below.

According to the theoretical discussion in chapter 5, we stated that system

3 has two zeros in the open right half plane for an e > 0 but only one for an

e < 0. We see that the system can handle negative e better than positive,

(see figure 11 and 12).

The curve that shows the acceleration is mostly beneath the control signal

u in all graphs. It is also the most oscillating signal in the two last plots.

The tests using the tangent hyperbolic function are carried out with dif-

ferent sets of A for each systems. It is therefore not so easy to compare

the behavior for the actual systems. However, during experiments that are

not presented in the report, it has been shown that system 3 is more easily

disturbed for an e _ 0 than system 2 is.

Correct total error for figure 11 is 0.2435 and 0.3126 for figure 12.

Onedlm. traJ:mprl51knoveLm I1 --1 12--1 eg.0n.20

.......................i ii..........................................................................

ACC

-11.5

i

--1 I I I I I I f I
0 0.5 1 1.5 2 2.5 3 3.5 4

To(iderror:0.02377 Polntenor:0 Gmph:l Tlmet

Figure 10: Tangent hyperbolic tracked by system 3.
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I

o

Onedlm. tmj: mpr151knoveLm I1 --I 12=-1 op=-0.003 n,,20
1,5 ........... _............ • ........... • ............ - ........... , ........... _ ............ - ........... •

_+ + + i :,; °

--11 '. 0"" + _.q "

-1.5

i I I I% ols , ,15 _ 21s 3 31s ,,
To(aJetn)r:0.09776 Polnlen_r:O Gra_:l Tlmel

Figure 11: Tangent hyperbolic tracked by system 3.
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1,5

1

0,5

cs 0

A_

-o.!

-1.5

Onedlm. traj: mpr151knov.,,.=.mI1 =-1 12--1 ep- 0.001 n-20
2.5 ........ _............ , ........... • ............ . ............ ....................... • ........... •

............i^ ......}............................................................................

...............!-!.....D_-!......+_.......................i........................i...........!
.........._ ! . " _...........!...........i...........i...........;

;i"+:.......... ++iiii
i i I i t i

0,5 1 1,5 2 2.5 3 3.5 4
Total m'rtx : 0.2535 Point ec?_ : 0 Graph : 1 Time I

Figure 12: Tangent hyperbolic tracked by system 3.



8 RESULTS 46

System 3's characteristics are further examined below when it is applied to

the sine curve. Figure 5 shows the obtained control signal u and acceleration

for A1 = AP = -1 and e = 0. The first graph below displays the control signM

to for the same system and parameters. This is to exhibit the calculated

signals for a smooth case so we have something to compare with when it is

getting rough.

One dim. trlj: n'wl Slknovei.m I1 - -1 12. -1 ep - 0 n - 26

... ,5o[...............i................i...............:-:...............i................i...............i...............;...............i...............i...............i................!...............i

-I_ .................................................................................... '_.............

I I I I I I

-2_ 1 2 3 4 6

ToUdefror:0.003N2 Polnlenor:0 Gmpil:8 Timer

Figure 13: Sin tracked by system 3.

We receive some other signals in the following figures when system 3 is run by

an e # 0. Observe the twisted trajectory in figure 15 with an accompanying

large value on the total error. Notice also the magnitude on the control signal

w and its third derivative, shown in figures reffi:16 and 17. The system seems

to be more sensitive for an e > 0 than for an e < 0, this is probably due to

the circumstance that it has two zeros in the open right half plane in the

first case but only one zero in the second case. The oscillating acceleration

is shifted to a later time interval and has there a larger magnitude for a

negative e.
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0

-0.5

Onodlrn. trsj:mprl51knove4.m I1 --1 12.-1 ep.0.O_Qn.26

-2 ................ ................ , ................ • ............... , ................ • ............... ,

-2,5 ................................................................................................... :

.306 I I ! I I I

2 3 4 e

To(a/w'mr:0.2617 Polnterror:0 Graph:3 T;met

Figure 14: Sine tracked by system 3.

0.2

0.1

Cgu 0

-0.1

-0.2

-0.3

-0.4
0

Ormcllm. traj:mpr151knovel.m tl --I 12--1 q)-0.(X]2n-26
0,4 ...................................................................................................

:J
I I I I i I

1 3 4 5
Total error : 0.2617 Pointenor:0 Graph:5 Tknet

Figure 15: Sine tracked by system 3.
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C

_w

-IOO0

-15(_

Onedlm.trq:mprlGlknovel.m I1 --1 12.-1 mp-O.OOQn-26
500 ................................................................................. * ................

vi
......................................................... { ................ .. ...............

I t I I i I

1 2 5 6

To_lerror:O.2617 Polnterror:O Gr_:8 "l'krw!

Figure 16: Sine tracked by system 3.

--O

107 Onedlm. traJ:mprl51knov_.rn II--1 tO--lep-O.OOQn-26
2.5 ...................................................................................................

: iiiiilil :i: ilii:i
1.5

1 ................................................ : ............... : ................ .:",,"............. :

0.5

!:

i z L I z t
1 2 3 4 5 6

To(aJermr:O.2817 Polmerror:O Graph:11 "rrmet

Figure 17: Sine tracked by system 3.
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One dkn.traJ: mprlGllmo_oLm I1 --1 12.-1 ep---0.0Ol n.28
0,6 - ............................................................................... .- ................

A

0.4 ............... : ............... _............... T ............... i"'!! .......... i ...............

o_...............................:-vv........i............Vii_............i
-0.4 ...................................................................................................

-0°_ .................................................................. • .................................

i i i i i i
_0.,,0n 1 2 4 5 6

TotaJm'Tor:0.0515Q Polntenor:0 Gml_l:3 Tlrmlt

Figure 18: Sine tracked by system 3.

CSu

One dim. traJ:ml:x151knoveLm I1 --1 12.-1 ep. -0.001 n-26
0.4 ..................................................................................................

0.3

0.2

0.1

@

-0.1

-0.2

-0.3

-0.4' i i i i i i
1 2 3 4 6

To, error:0.0515@ I:_ntermr:0 Graph:5 Time!

Figure 19: Sine tracked by system 3.
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Applying the step function to system 3 gives that the very large control

signals u can be reduced by an e # 0 to the cost of a larger total error.

Onedlm. vq:mprl51kno_eLm I1 --0.1 _.-0.2ep-On-lO

50 I- ........ _......... _ ......... . ......... ; ......... :. ........ _ ........ - ......... . ......... _.........

:I..........................i........}i_...........................i.........i.........i........!.........!.........!.........?-<".......i.........i.........i.........i.........!

0.....: .......!_ .......i/.....!_i.......;_i......_.......{

"::f........ii:_.........i.........i:i::i.........i...............__ i:::i ii[............i.........i.........}
_. i i i i : i i _ _ ;

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

TotaJenor:4.091 Polnten'or:O Grloh:5 Tlmet

Figure 20: The step function tracked by system 3.

C_u

(_,e db_,tmj: mpr151kno_Lm I1 --0.1 12.-0.2i i.--O.O02SSn. 10

20 ................... : ...............................................................................

"i • :

i /! "i :
s ....................................-_..._...........;.._.............................i..........

; i] i : iP-,2

........i.........;.........!.........i.........i.........i_.......!........i.........i.........:........i.........i.........i........i...........................
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1,6 2

TomJerror:5.666 Poinlerror:O Gmp4h:5 Tlmel

Figure 21: The step function tracked by system 3.
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C,Su

Onedlm. trq:mprlSlknoveLm I1 .-0.1 t2.-O.2ep.O.OO68n.lO
1(] .................................................................. T .............................

..........i.........i.........i...........i........_.........i.........i.........i.........i
! ! : _ ! ! ! ! ! !

4

-.4 ......... ; ......... _ .............................. i._ ............. i.....: ......... <......... _......... i

4

................i.......i...............IU..............i........i.........i
°10

0 0.2 0,4 0.8 0.8 1 1.2 1.4 1.6 1.8 2
TolaJ ecr_ :6.37_J I=_nt error :0 Graph : 5 Time t

Figure 22: The step function tracked by system 3.

At last we will take a look at system 2 applied to the sine function with A 1

= )_2 = -1 and for a very particular choice of e. Figures 23 and 24 show

an oscillating but quite normal behavior for this system. When examining

figure 24 which is run with a slightly changed e it looks about as the other

two until the scale on the y-axis is observed. The first two graphs use an e =

0.004186 respectively e = 0.004188. The value of e for the last three figures

is 0.00418702471143, which gave the largest oscillatory motions. It seems

that we have found a set of parameters that brings system 2 in to resonance.

When changing the value on _ we might affect the transfer function so that

the frequency of the actual in signal w is the peak frequency; see figure

27. In such a case we will receive an increased amplification of the output

signal. Notice that this phenomenon only appears when tracking the sine

test function.
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1.5

1

0.5

01

-0.5

-1.5 t _ .....

-2;

One din. tral:, nllx141knoveLm 11 --1 12.-1 ep. 0,004186 n -26

i

• 'V_ • • ii !

' !i..............i...............i...............i...............}...............]
i i i i i i

3 4 5 6
TotaJernx:S.823 Po_nterror:0 Graph:3 Tlmet

Figure 23: Sine tracked by system 2.

dim. tra_: rnl_141knoveLm I1 - -1 12. -1 ep - 0.004188 n -28

_ 1.5 ..........................................................................................

: i i _ _ .: :

• aA.... ::

• ]ii_!i,_i i
i. !, , W _i_...:-- _..: _ v_': _.:::

_1........."-_................'VV!.Vvi............;i...............i
I

-1.5 0 1
i I I

2 3

To_Jerr_:S.M2 Potnterror:0 Graph:3 l"]rrmt

Figure 24: Sine tracked by system 2.
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x 101 One_lm. trq: mpr141krmveLm I1 - -1 12.-1 ep. 0.0(M187n -28

'Ii.....................................i...............:................i...............!
: ! i !!

.........i...,...............:_,,-A-__-_J-,,........i.i...............,
o..2!!_ _i!_._!!_!!_t!_1!............i
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I i i I I I
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TotaJ error : 3.857e+05 I=_nt _ : 0 Graph : 3 "lima t
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Figure 25: Sine tracked by system 2.
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10T One dim. trill: rnpr141knoveLm I1 - -1 12- -1 e@- 0.004187 n - 28
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Total erroc : 7.624e+05 Point error : 0 Graph : 5 Time t

Figure 26: Sine tracked by system 2.
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x 10m Onedlm. tr_ rriW141knov_m I1 .-1 12.-1 ep- 0.004187n- 26

'[!,............._ _+^i,...............+,+...............T+'...............+::+................+_i...............}+
o_1:.!.-! !.-.:.,!,,_..!!..,A...._................]................!................]...:............!

:I::+!ii++iii'+,i]i+I' ++" i
-41

I : i i
-I ............... ................ _................ :................ ; ................ ."............... ":

CSW15
-'0 1 2 4 8

TotaJ error : 7.624e+_ Point ixror : 0 Graph : 7 Tlrno t

Figure 27: Sine tracked by system 2.

8.1 Surprising Results

Looking at figure 4 or 5 one might be surprised at the appearance of the

control signal u and the acceleration. Even if the sine function is curving it

should not cause such peaks in the graphs. The reason for this is as follows.

Consider the system

[01] [0] f j (y)z= 0 0 z+ 1 u y= 1 0 z z=

From the given system we have that :_z = z, and that _, = u. If we use

splines and force the system to track the function f(t) it implies that the

first element in the state vector, xz, equals the function, i.e. y(t.,) = f(t).

This denotes that z, (t) = ] (t) and that the control signal u(t) = f (t). The

velocity in figure 28 should by our theory have something in common with

the derivative of the curve f(t) = sin t. The derivative ](t) = cos t, so in the

beginning of the first region when f(t) = -1, the graph is shifted upwards

and scaled, the velocity should be zero. When f(t) becomes zero the velocity

ought to reach its maximum and then decline. For the other half we have the

reversed situation and should therefore have an inverted curve. This behavior
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can be recognized in the first graph and a similar reasoning for the control

signal u equals ](t) = -sin t gives the calculated control signal in figure 4.

Here $ -fi 0 so the graph is shifted to the right. So the splines do not only

try to follow the specified trajectory they also approximates its derivatives.

We can thus effect a perfect trajectory of the test curve but the prize we pay

is huge values on the control signals and accompanying acceleration. The

behavior described makes it impossible to realize a smooth aircraft control

using splines.

This very simplified heuristic description of the phenomenon will be com-

pleted in a paper written at Texas Tech University, Lubbock, USA, by Horn

Professor Clyde Martin, PhD, and Assistant Professor Zhimin Zhang, PhD.

O_e dim, traj: mpr121 dw0.rn lan'loda - 0 n - 26

°_f...............................i........_...............i................f.......}
o.,..............._ .....i................i...............i

-o.,i-o.,.........................i................_ [: .............!...........................ii
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Figure 28: Sine tracked by system 1.
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9 Resume in Swedish

Inledningsvis var v£ran avsikt att ta fram styrlagar fSr en flygplans modell

s£ att den flSgs s£ behagligt fSr passagerarna som mSjligt. Passagerar kom-

forten var det allra mest v_entliga s£ vi utvecklade tv£ kontroll lagar som

anv£nde derivatorna av den pilot inducerade styrningen u. Detta ger inte den

energi sn£1aste insignalen men tar bort de v_rsta topparna hos styrsignalen

och medfSljande acceleration.

Programvaran som anv?mts inkluderar Matlab och Maple fSr ber£kningar

och Latex som ordbehandlings program. Andra h£1ften av rapporten best£r

av Matlab program och som avslutas med en referenslista.

Vi ansatte den vanliga endimensionella behandlings proceduren och im-

plementerade systemen i Matlab. Ett huvud program, med tillh6rande hj£1p

program, fSr varje kontroll lag.

De givna systemen analyserades ur uppn£barhets och stabilitets synpunkt

vilket resulterade i en bedSmning att de var stabila men inte garanterade

insignal-utsignal stabilitet. Se kapitel 5.

En "spline" £r en kurva till ett n:te gradens polynom vilken _ fSrenat med

liknande polynoms kurvor i respektive _,ndpunkt. I varje fSrenings punkt har

funktionerna sina n-1 fSrsta derivator gemensammma. Detta ger en kurva

som av 5gat tycks vara helt homogen men som i sj£1va verket best£r av

ett antal sammankopplade delar. Kapitel 6 behandlar "splines" och den

anv?mdna kontroll teorin.

Huvud resultatet var att vi inte kunde ta fram mjuka styrlagar eftersom

"splinsen" inte bara fSrsSker approximera test kurvan utah _,ven tar h_,nsyn

till dess derivator. Genom systemet p£verkas _,ven styrsignalen och vi erh£Uer

omSjligt stora styrsignaler och accelerationer. Noggranheten i fSljningen

alltid exemplarisk. Kapitel 8 behandlar rapportens huvudresultat.
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10 Matlab Programs

function x - mprl21der0(spc_plot,t,n,cleargr,pointfcn,lambda)

%% THIS PROGBAMCALCULATES CONTROLLAWS FOR A ONE

DIMENSIONAL TRAJECTORY %%

%% spc_plot DETERMINES WHICH GRAPH TO BE DISPLAYED,

CHOSE AN INTEGER =<5 %%

%% t IS THE TIME PERIOD FOR WHICH THE SYSTEM

IS TO BE CONTROLLED %%

%% n ARE THE NUMBER OF POINTS AT THE SPECIFIED

TRAJECTORY, CHOSE t/n>l/10 %%

%% cleargr CLEARS THE CURRENT WINDOW, CHOSE I OR 0

%% pointfcn SPECIFIES THE TRAJECTORY %%

%% lambda AFFECTS THE INSTABILITY OF THE SYSTEM %%

%%

global A B h t n

%% THE SYSTEM %%

A=[01 ;

0 lambda] ;

B=[O ;

t];

c:[10];

%% FUNCTION pointfcn DETERMINES THE SPECIFIED TRAJECTORY %%

%% NECESSARY FORTHE COMPOUND FUNCTION pointsinl2 %%

if pointfcn=='pointsinl2';

t=5.2;

n=26;

end;

R=feval (pointfcn) ;
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%% CALCULATION OF THE INTEGRAL FROM 0 TO h %%

m=48;

mp=m/6;

tol=le-08;

%% NUMBER OF POINTS BETWEEN INTERPOLATIONS,

CHOSE A MULTIPLE OF 6 %%

%% DETERMINES THE PRECISION IN THE

SPLINE APPROXIMATION %%

%% THE NUMERIC ERROR TOLERANCE %%

Mtau(:,l:2)=zeros(2);

tau=O;

for j=l:m

oldtau=tau;

tau=oldtau+h/m;

Mtau(:,2,j+l:2,j+2)= quad812mod('integrand',oldtau,tau,tol)

+ Mtau(:,2*j-l:2*j);

end;

M=Mtau(:,2*m+l:2*m+2);

e_Ah=expm(-A*h);

Minv=inv(M);

ZZ=Minv*e_Ah;

WW=e_Ah'*ZZ+Minv;

WL= [WW(2,2)] ;

ZLU: [ZZ(2,2)] ;

ZLL: [ZZ(2,2)] ;

WR=[WW(2,i)];

ZRU:[ZZ(2,1)] ;
ZRL= [ZZ(1,2)] ;

Ulu= [Minv(2,2)] ;

Uru= [Minv(2, i)] ;

%% PARTITIONING MATRICES %%

%% FORMING OF THE RIGHT HAND SIDE OF THE BLOCKDIAGONAL

SYSTEM %%

for i=2:n

Omega(i,I)=-ZRL*R(I,i-1)+WR*R(I,i)-ZRU*R(I,i+i);
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end ;

0mega(1, I)= Uru*R(1,1) - ZRU*R(I,2) ;

0mega(n+l,1)=ZRL*R(1,n) + (Uru-WR)*R(I,n+I) ;

Z% FORMING OF THE LEFT HAND SIDE OF THE BLOCKDIAGONAL

SYSTEM ZZ

for i=2:n

DD(i,i-I)=ZLL;

DD(i,i)=-WL;

DD(i,i+I)=ZLU;

end;

DD(1,1)=(lambda-Ulu);

DD(I,2)=ZLU;

DD(n+I,n)=-ZLL;

DD(n+l,n+l)=(lambda+WL-Ulu);

DD=sparse(DD); ZZ SQUEEZING OUT ALL ZERO ELEMENTS

FROM MATRIX DD ZZ

ZZ GAUSSELIMINATION TO PRODUCE AN UPPER

TRIANGULAR SYSTEM Z%

for i=l:n

zd=DD(i+l, i)/DD(i, i) ;

DD(i+l,i)=DD(i+l,i)-zd*DD(i,i);

DD(i+l,i+l)=DD(i+l,i+l)-zd*DD(i,i+l);

0mega(i+l,l)=0mega(i+l,l)-zd*0mega(i,l);

end;

%Z BACKSUBSTITUTION TO SOLVE F0R THE XVEL Z%

xvel(l,n+l)=Omega(n+l,l)/DD(i+l,i+l);

for i=n:-l:l

xvel(l,i)=(0mega(i,l)-DD(i,i+l)*xvel(l,i+l))/DD(i,i);

end;
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%% MAKING OF THE STATE VECTOR %%

for i=O:n

x(: ,i+l)=[[R(l,i+l)]

[xvel(i,i+i)]] ;

end;

if cleargr

clf;

hold on;

grid on;

end;

%% PLOTTING OF THE CALC/SPEC TRAJECTORY,VEL0CITY,

CONTKOLSIGNAL AND ACCELERATION _

plotadm=0;

while spc_plot

if plotadm

if spc_plot<6

figure;

hold on;

grid on;

%itle(['0ne dim. %raj: mprl21der0.m lambda = ',

num2str(lambda),' n = ',num2str(n)])

xlabel(['Total error : ',num2str(Total_error),'

Pointerror : ',num2str(Point_error),' Graph :

',num2str(spc_plo%),' Time t'])

for k=0:n

plot(k*h,x(l,k+l),'o')

end;

end;

end;

breakadm=0;

fadm=0; %% NORMALLY fadm=0, NECESSARY FOR WRITING OF

TEXTS IN THE PLOT %%
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for j=O :m

eAtau=expm(A*j*h/m) ;

7,7, CHOOSE e.g 2:n-3 TO AVOID PROBLEMS AT THE ENDPOINTS 7.7.

for i=fadm :n-I

entry ( :,i+1)=eAt au* (x(:,i+l) +Mtau (:,2*j +i :2*j +2) *

Minv* (e_Ah*x (:,i+2) -x( :,i+l)) ) ;

csignvec (:,i+1) =B '*expm(-A' *j*h/m)*Minv*

(e_Ah*x( :,i+2)-x( :,i+1)) ;

i_ j==o
if i==fadm;

entry I=entry (1,fadm+ 1);

entry2=entry (2,fadm+ i) ;

csignvecl=csi_nvec (1,fadm+l) ;

end;

end;

if rem(j ,mp)==0

if j<=m-mp

traj ect (1,j/mp*n+ (i+l)) =entry(l, i+1) ;

end;

end ;

if j==m
if i==n-1

traj ect ( 1,6*n+ 1) =entry ( 1, i+l) ;

end;

end;

if spc_plot==l

plot (i*h+j*h/m,entry(1,i+l), '. ') 7.7. TRAJECTORY 7.7.

plot(i*h+j*h/m,csignvec(l,i+1),' ') 7.7.CONTROL u 7.7.

7.7,ACCELERATION 7,7.

plot (i*h+j *h/m, lambda*ent ry (2,i+l) +

csignvec(1,i+l),' ')

elseif spc plot==2

plot(i*h+j*h/m,entry(1,i+l),'. ') 7.7.TRAJECTORY 7.7.

plot (i*h+j*h/m,entry(2,i+l), '. ') 7.7.VELOCITY 7.7.

plot(i*h+j*h/m,csignvec(1,i+l),' ') 7.7'CONTROL u 7.7.

7,7.ACCELERATION 7.7,

plot (i*h+j *h/m, lambda* entry (2,i+I) +
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csignvec(1,i+l),' ')

elseif spc_plot==3

plot(i*h+j*h/m,entry(1,i+l),' ')

%_ ACCELERATION %%

plot(i*h+j*h/m,lambda*entry(2,i+l)+

csignvec(l,i+l),' ')

elseif spc_plot==4

plot(i*h+j*h/m,entry(l,i+l),'.')

plot(i*h+j*h/m,entry(2,i+l),'.')

spc_plot==5

(i*h+j*h/m,entry(l,i+l),'.')

(i*h+j*h/m,csignvec(l,i+l),' ')

elseif

plot

plot

else

disp(' ')

disp(' NOT A

breakadm=l;

end;

if breakadm

break;

end;

end;

if breakadm

break;

end;

end;

if spc_plot<6

ax=axis;

a.z2=a.z(1,2);

if a_2<1.5

xpos=3/4*0.2;

elseif ax2>=5

xpos=3/4;

else

xpos=0.25;

end;

if spc_plot<3

ax4=ax(l,4);

VALID CHOICE ')

%% TRAJECTORY %%

%% TRAJECTORY %%

%% VELOCITY%%

%% TRAJECTORY %%

%% CONTROL u %%
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if ax4<l

ax4=ax4* I0 ;

if ax4<l

ax4=ax4* i0 ;

end ;

end;

if ax4> I0

ax4=ax4/i0 ;

if ax4>lO

ax4=ax4/i0 ;

end ;

end;

if rem (ax4,2) ==0

yadd-- (ax (1,4)/4) .1/5 ;

else

yadd= (ax (1,4)/3)* 1/5 ;

end;

ypo s=l ambda*ent ry2+cs ignvec 1 ;

text (-xpos, ypos, ['ACC' ] ) ;

if abs(ypos-csignvecl)>yadd

text (-xpos,csignvecl, ['CS u']) ;

elseif ypos-csignvecl>O

text (-xpos, csignvecl-yadd, ['CS u' ] ) ;

else

text (-xpos,csignvecl+yadd, ['CS u'] ) ;

end ;

if spc_plot==2

text (-xpos, entry2, ['VEL' ] ) ;

end;

end;

if spc_plot==3

ypo s=lambda*entry2+cs ignvec I ;

text (-xpos,ypos, ['ACC']) ;

end;

if spc_plot==4

text (-xpos, entry2, ['VEL'] ) ;

end;
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if spc_plot==5

text(-xpos,csignvecl, ['CS u']) ;

end;

end;

ZZ ESTIMATION 0F THE ACCURACY IN THE SPLINE

APPROXIMATION Z_

if plotadm==0

[Total_error,Average_error,Point_error,End_point_error] =

spline_error(pointfcn,R,traject);

Total_error

Average_error

Point_error

End_point_error

title(['0ne dim. traj: mprl21der0.m

(lambda),' n = ',num2str(n)])

xlabel(['Total error : ',num2str(Total_error),'

error : ',num2str(Point_error),'

num2str(spc_plot),' Time t'])

if spc_plot<6

for k=O:n

plot(k*h,x(1,k+l),'o')

end;

end;

end;

lambda = ',num2str

Point

Graph : ',

plotadm=plotadm+l;

disp(' ')

disp(' WOULD YOU LIKE TO SEE ANOTHER GRAPH OF THE CURRENT

SYSTEM AND ITS TRAJECTORY ? ')

disp(' ')

disp(' FINISH THE PROGRAM : 0 ')

disp(' DISPLAY THE TRAJECTORY, C0NTROL u AND

ACCELERATION : i ')

disp(' DISPLAY THE TRAJECTORY, VELOCITY, CONTROL u AND

ACCELERATION : 2 ')
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disp(' DISPLAY THE TRAJECTORY AND ACCELF_ATION : 3 ')

disp(' DISPLAY THE TRAJECTORY AND VELOCITY : 4 ')

disp(' DISPLAY THE TRAJECTORY AND CONTROL u : 5 '1

spc_plot = input(' MAKE YOUR CHOICE : ');

end;

clear global;

for k=2:plotadm

delete(k);

end;

end;

function [Q,cnt] = quad812mod(funfcn,a,b,tol)

_Alteration of the original matlab toolbox program.

_QUAD8 Numerical evaluation of an integral, higher order

method. Q = QUAD8('F',A,B,TOL) approximates the

integral of F(X) from to B to within a relative error

of TOL. 'F' is a string containing the name of the

function. The function must return a 2*2-matrix

output value if given an input value.

Q = Inf is returned if an excessive recursion level

is reached indicating a possibly singular integral.

QUAD8 uses an adaptive recursive Newton Cotes 8 panel

rule.

Cleve Moler, 5-08-88.

Copyright (c) 1984-94 by The MathWorks, Inc.

[Q,cnt] = quad8(F,a,b,tol) also returns a function

evaluation count.

Top level initialization, Newton-Cotes weights

w = [3956 23552 -3712 41984 -18160 41984 -5712 23552

3956]/14175;

x = a + (0:8)*(b-a)/8;

set up function call
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for i=x

y = [y feval(funfcn,i)];

end;

7' Adaptive, recursive Newton-Cotes 8 panel quadrature

QO = zeros(2);

[Q,cnt] = quad812stpmod(funfcn,a,b,tol,O,w,x,y,QO);

cnt = cnt + 9;

end;

function [Q,cnt] = quad812stpmod(FunFcn,a,b,tol,lev,

w,xO,fO,O0)

7'Alteration of the original matlab toolbox program.

7'QUAD8STP Recursive function used by QUAD8.

7'
Y.
Y.
Y,
7'
7'
7'

Y,
Y.

7'
7'
7'
7'

[Q,cnt] = quad8stp(F,a,b,tol,lev,w,f,QO) tries to

approximate the integral of f(x) from a to b to

within a relative error of tol. F is a string

containing the name of f. The remaining arguments

are generated by quad8mod or by the recursion.

lev is the recursion level.

w is the weights in the 8 panel Newton Cotes formula.

xO is a vector of 9 equally spaced abscissa is the

interval.

fO is a matrix of the 9 function values at x.

QO is an approximate value of the integral.

Cleve Moler, 5-08-88.

Copyright (c) 1984-94 by The MathWorks, Inc.

LEVMAX = I0;

7' Evaluate function at midpoints of left and

right half intervals.

x = zeros(I,17);

x(1:2:17) = xO;

x(2:2:16) = (x0(1:8) + x0(2:9))/2;
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f(:,l:2)= fo(:,l:2);

for i=1:8

f(:,4*i-l:4*i) = feval(FunFcn,x(2*i));

f(:,4.i+1:4.i+2) = (f0(:,2-i+1:2.i+2));

end;

Integrate over half intervals.

h = (b-a)/16;

QI=O;Q2=O;

for i=1:9

Q1 = Q1 + h*w(i)*f(:,2*i-1:2*i);

Q2 = Q2 + h*w(10-i)*f(:,35-i*2:36-i*2);

end;

Q = Q1 + Q2;

Recursively refine approximations.

if norm(Q - qO) > tol*norm(Q) & lev <= LEVMAX

c = (a+b)/2;

[Ql,cntl] = quad812stpmod(FunFcn,a,c,tol/2,1ev+1,

w,x(l:9),f(:,l:18),Q1);

[Q2,cnt2] = quadSl2stpmod(FunFcn,c,b,tol/2,1ev+1,

w,x(9:17),f(:,lT:34),Q2);

Q = Q1 + Q2;

cnt = cnt + cntl + cnt2;

end

end;
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funct ion x = mpr 14 lknovel (spc_plot, t,n, cieargr, po intfcn,

lambdal, lambda2, ep)

_% THIS PROGRAM CALCULATES CONTKOLLAWS F0R A ONE

DIMENSIONAL TRAJECTORY %%

_% spc_plot DETERMINES WHICH GRAPH TO BE DISPLAYED,

CHOSE AN INTEGER =<9 _

%% t IS THE TIME PERIOD F0R WHICH THE SYSTEM IS

TO BE CONTROLLED _%

%_ n ARE THE NUMBER 0F POINTS AT THE SPECIFIED

TRAJECTORY, CHOSE t/n>1/10 %_

%_ cleargr CLEARS THE CUP_ENT WINDOW, CHOSE I OR 0 _%

%_ pointfcn SPECIFIES THE TRAJECTORY _

_ lambdal AFFECTS THE INSTABILITY OF THE SYSTEM _

%% lambda2 ALS0 EFFECTS _E STABILITY OF THE SYSTEM,

CHOSE 11-=12 %_

_% ep<>0 PUTS A ZERO IN lq_E TRANSFEKFUNCTION %%

global A B h t n

_% THE SYSTEM _%

A=[ 0 1 0 O;

0 lambdal 1 O;

0001;

000 lambda2];

B=[ 0 ep 0 1]';

c=[ lOOO];

%% FUNCTION pointfcn DETERMINES THE SPECIFIED TRAJECTORY %_

%% NECESSARY F0R THE COMPOUND FUNCTION pointsinl2 %_

if pointfcn=='pointsin12';

t=5.2;



10 MATLAB PROGRAMS 69

n=26;

end;

R=feval(pointfcn);

%% CALCULATION OF THE INTEGRAL FROM 0 TO h %%

m=48;

mp=m/6;

tol:le-08;

Z% NUMBER OF POINTS BETWEEN INTERPOLATION,

CHOSE A MULTIPLE OF 6 ZZ

%% NEEDED FOR fcn spline_error THAT

DETERMINES THE PRECISION IN THE

SPLINE APPROXIMATION %Z

%% THE NUMERIC ERROR TOLERANCE Z%

Mtau(:,l:4)=zeros(4);

tau=O;

for j=l:m

oldtau=tau;

tau=oldtau+h/m;

Mtau(:,4*j+l:4*j+4)= quad814mod('integrand',oldtau,tau,tol)

+ Mtau(:,4*j-3:4*j);

end;

M=Mtau(:,4*m+l:4*m+4);

%% FORMING OF THE MATRICES FOR THE BLOCKDIAGONAL SYSTEM %Z

e_Ah=expm(-A*h);

Minv=inv(M);

ZZ=Minv*e_Ah;

WW=e_Ah'*ZZ+Minv;

Z% CONTINUOUS CONTROLLAW ZZ

WLDO=[ep*WW(2,2)+WW(4,2) ep*WW(2,3)+WW(4,3) ep*WW(2,4)+

WW(4,4)] ;

ZLUDO=[ep*ZZ(2,2)+ZZ(4,2) ep*ZZ(2,3)+ZZ(4,3) ep*ZZ(2,4)+

ZZ(4,4)] ;
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ZLLDO= [ep*ZZ (2,2) +ZZ (2,4) ep*ZZ (3,2) +ZZ (3,4)

ZZ(4,4)] ;

WRDO=[ep*WW(2,1)+WW(4,1)] ;

ZRUDO= [ep*ZZ (2,1)+ZZ(4,1)] ;

ZRLDO= [ep*ZZ (1,2)+ZZ(1,4)] ;

ep*ZZ(4,2)+

%% CONTINUOUS FIRST DIFFERENTIAL OF CONTROLLAW %%

WLDl=[ep,WW(l,2)+ep*lambdal*WW(2,2)+WW(3,2)+lambda2*WW(4,2)

ep,WW(1,3)+ep*lambdal*WW(2,3)+WW(3,3)+la.mbda2*WW(4,3)

ep,WW(1,4)+ep*lambdal*WW(2,4)+WW(3,4)+lambda2*WW(4,4)];

ZLUDl=[ep*ZZ(1,2)+ep*lambdal*ZZ(2,2)+ZZ(3,2)+lambda2*ZZ(4,2)

ep*ZZ(1,3)+ep*lambdal*ZZ(2,3)+ZZ(3,3)+lambda2*ZZ(4,3)

ep,ZZ(1,4)+ep*lambdal*ZZ(2,4)+ZZ(3,4)+lambda2*ZZ(4,4)];

ZLLDl=[ep*ZZ(2,1)+ep*lambdal*ZZ(2,2)+ZZ(2,3)+lambda2*ZZ(2,4)

ep,ZZ(3,1)+ep*lambdal*ZZ(3,2)+ZZ(3,3)+lambda2*ZZ(3,4)

ep*ZZ(4,1)+ep*lambdal*ZZ(4,2)+ZZ(4,3)+lambda2*ZZ(4,4)];

WRDl=[ep*WW(1,1)+ep*lambdal*WW(2,1)+WW(3,1)+lambda2*WW(4,1)];

ZRUDl=[ep*ZZ(1,1)+ep*lambdal*ZZ(2,1)+ZZ(3,1)+lambda2*ZZ(4,1)];

ZRLDl=[ep*ZZ(1,1)+ep*lambdal*ZZ(1,2)+ZZ(1,3)+lambda2*ZZ(1,4)];

%% CONTINUOUS SECOND DIFFERENTIAL OF CONTROLLAW %%

WLD2=[ep*lambdal*WW(1,2)+(ep*lambdal'2+l)*WW(2,2)+lambda2*

WW(3,2)+lambda2^2,WW(4,2) ep*lambdal*WW(1,3)+

(ep*lambdal'2+l)*WW(2,3)+lambda2*WW(3,3)+lambda2^2 *

WW(4,3) ep*lambdal*WW(1,4)+(ep*lambdal^2+l)*WW(2,4) +

lambda2*WW(3,4)+lambda2^2*WW(4,4)];

ZLUD2=[ep*lambdal*ZZ(1,2)+(ep*lambdal^2+l)*ZZ(2,2)+lambda2 *

ZZ(3,2)+lambda2"2*ZZ(4,2) ep*lambdal*ZZ(1,3)+

(ep*lambdal'2+l)*ZZ(2,3)+lambda2*ZZ(3,3)+

lambda2"2*ZZ(4,3) ep*lambdal*ZZ(1,4)+(ep*lambdal^2+l) *

ZZ(2,4)+lambda2*ZZ(3,4)+lambda2^2*ZZ(4,4)];

ZLLD2=[ep*lambdal*ZZ(2,1)+(ep*lambdal'2+l)*ZZ(2,2)+lambda2*

ZZ(2,3)+lambda2^2*ZZ(2,4) ep*lambdal*ZZ(3,1)+

(ep*lambdal'2+l)*ZZ(3,2)+lambda2*ZZ(3,3)+lambda2"2*

ZZ(3,4) ep*lambdal*ZZ(4,1)+(ep*lambdal'2+l)*ZZ(4,2)+
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1 ambda2*ZZ (4,3) +lambda2" 2*ZZ (4,4) ] ;

WRD2= [ep* lambdal*WW (1,1) + (ep*l ambdal "2+ 1) *WW(2,1) +lambda2*

WW(3,1)+lambda2"2*WW(4,1)] ;

ZRUD2= [ep*lambdal*ZZ (1,1) + (ep*lambdal" 2+1 ) *ZZ (2,1) +1 ambda2*

ZZ(3,1) +lambda2"2*ZZ(4, 1)] ;

ZRLD2= [ep*lambdal*ZZ (1,1) + (ep*lambdal'2+l)*ZZ(1,2) +lambda2*

ZZ(I ,3)+lambda2"2*ZZ(l,4)] ;

%% DIFFERENTIAL APPROXIMATIONS F0R THE BOUNDARY

CONDITIONS %%

ydlO=(R(1,2)-R(1,1))/h;

yd11=(R(1,3)-R(1,2))/h;

ydl2=(R(1,4)-R(1,3))/h;

ydln=(R(l,n+l)-R(l,n))/h;

ydln_l=(R(1,n)-R(1,n-1))/h;

ydln_2=(R(1,n-1)-R(1,n-2))/h;

u0=(yd10-ydll)/h;

ul=(ydll-yd12)/h;

un=(ydln_l-ydln)/h;

un_l=(ydln_2-ydln_l)/h;

udl0=(u0-ul)/h;

udln=(un 1-un)/h;

X0=[ydl0; u0; udl0]; %% 3/4 of

Xn=[ydln; un; udln]; %% 3/4 of

the the first state vector %%

the the last state vector %%

%% FORMING OF THE RIGHT HAND SIDE 0F THE

BLOCKDIAGONAL SYSTEM %%

j=l;

for i=2

Omega(]

Omega(j

0mega(j

end;

0mega(l

0mega(2

:n

,1)=-ZRLDO,R(I,i-1)+WRD0*R(I,i)-ZRUD0*R(I,i+I);j=j+I;

,I)=-ZRLDI*R(I,i-I)+WBDI*R(1,i)-ZBUDI*R(I,i+I);j=j+I;

,1)=-ZRLD2*K(1,i-1)+WRD2*R(1,i)-ZKUD2*R(1,i+I);j=j+I;

,1)=Omega(1,1)-ZLLDO*XO;

,1)=0mega(2,1)-ZLLDl*X0;
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Omega(3,1)=Omega(3,1)-ZLLD2*XO;

Omega(3*n-5,1)=Omega(3*n-5,1)-ZLUDO*Xn;

Omega(3*n-4,1)=Omega(3*n-4,1)-ZLUDl*Xn;

Omega(3*n-3,1)=Omega(3*n-3,1)-ZLUD2*Xn;

%% FORMING OF THE LEFT HAND SIDE OF THE

BLOCKDIAGONAL SYSTEM %%

for i=1:3

DD(I,i)=-WLDO(1,±);

DD(2,i)=-WLDI(I,i);

nm(3,i)=-WLD2(l,i);

if n>2

DD(I, i+3)=ZLUDO (I, i) ;

DD (2, i+3) =ZLUDI (i, i) ;

DD(3, i+3)=ZLUD2 (I, i) ;

end;

end;

for i=2:n-2

for j=-l:l

DD(3*i-2,3*i-4+j)=ZLLDO(1,j+2),

DD(3*i-2,3*i-I+j)=-WLDO(1,j+2),

DD(3*i-2,3*i+2+j)=ZLUDO(1,j+2),

DD(3*i-I,3*i-4+j)=ZLLDI(I,j+2),

DD(3*i-I,3*i-I+j)=-WLDI(I,j+2),

DD(3*i-I,3*i+2+j)=ZLUDI(I,j+2),

DD(3*i ,3.i-4+j)=ZLLD2(I,j+2),

DD(3*i ,3*i-I+j)=-WLD2(I,j+2),

DD(3*i ,3*i+2+j)=ZLUD2(I,j+2)

end;

end;

if n>2

for i=1:3

DD(3*n-5,3*n-9+i)=ZLLDO(I,i);

DD(3*n-4,3*n-9+i)=ZLLDI(I,i);

DD(3*n-3,3*n-9+i)=ZLLD2(I,i);

DD(3,n-5,3*n-6+i)=-WLDO(I,i);
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DD(3*n-4,3*n-6+i)=-WLDI(1,i);

DD(3*n-3,3*n-6+i)=-WLD2(1,i);

end;

end;

DD=sparse(DD); %% SQUEEZING OUT ALL ZERO ELEMENTS

FROM MATRIX DD %%

Z% GAUSSELIMINATION TO PRODUCE AN UPPER TRIANGULAR

SYSTEM %%

for k=2:3:3*n-7

for l=k:k+4

if Dm(k-l,k-l)'=O

zd=DD (l,k-l)/DD(k-I ,k-l) ;

DD(I, :)=DD(I, :)-zd*DD(k-l, :) ;

Omega(l,l)=Omega(l,l)-zd*Omega(k-l,l);

end;

end;

for l=k+l:k+4

if DD(k,k)-=O

zd=DD(l,k)/mD(k,k);

DD(I,:)=DD(I,:)-zd*DD(k,:);

Omega(l,l)=Omega(l,l)-zd*Omega(k,l);

end;

end;

for l=k+2:k+4

if DD(k+l,k+l)-=O

zd=DD(l,k+l)/DD(k+l,k+l);

DD(I,:)=DD(I,:)-zd*DD(k+I,:);

Omega(l,l)=Omega(l,l)-zd*Omega(k+l,l);

end;

end;

end;

k=3,n-5;

if DD(k,k)-=O

zd=DD (k+l ,k)/DD (k,k) ;
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DD(k+I, :)=DD(k+I, :)-zd*DD(k, :);

Omega(k+l, I)=Omega(k+l, l)-zd*Omega(k, I) ;

zd=DD (k+2, k)/DD (k, k) ;

DD (k+2, :)=DD(k+2, :)-zd*DD (k, :) ;

Omega(k+2, i)=Omega(k+2, I) -zd*Omega(k, I) ;

end;

if DD(k+l,k+l)-=O

zd=DD (k+2 ,k+l)/DD (k+l ,k+l) ;

DD (k+2, : ) =DD (k+2, : )-zd*DD (k+l, : ) ;

Omega (k+2,1) =Omega (k+2,1) -zd* Omega (k+ 1,1 ) ;

end ;

%% BACKSUBSTITUTION TO SOLVE FOR THE STATEVECTOKS %Z

udl(n-1)=Omega(3*(n-l),l)/DD(3*(n-l),3*(n-1));

u(n-l)=(Omega(3*n-4,1)-DD(3*n-4,3*(n-1))*udl(n-1))/

DD(3*n-4,3*n-4);

ydl(n-1)=(Omega(3*n-5,1)-DD(3*n-5,S*(n-1))*ud1(n-1)-

DD(3*n-5,3*n-4)*u(n-l))/DD(3*n-5,3*n-5);

if n>2

for k=n-2:-l:l

udl(k)=(Omega(3*k,l)-DD(3*k,3*k+3)*udl(k+l)-

DD(3*k,3*k+2)* u(k+l)-DD(3*k,S*k+l)*ydl(k+l))/

DD(3*k,3*k);

u(k)=(Omega(3*k-l,1)-DD(3*k-l,3*k+3)*udl(k+l)-

DD(3*k-l,3*k+2)*u(k+l)-DD(3*k-l,3*k+l)*ydl(k+l)-

DD(3*k-l,3*k)*udl(k))/DD(3*k-l,3*k-1);

ydl(k)=(Omega(3*k-2,1)-DD(3*k-2,3*k+3)*udl(k+l)-

DD(3*k-2,3*k+2)*u(k+l)-DD(3*k-2,3*k+l)*ydl(k+l)

-DD(3*k-2,3*k)*udl(k)-DD(3*k-2,3*k-1)*u(k))/

DD(3*k-2,3*k-2);

end;

end;

%% MAKING OF THE STATEVECTOKS %%

x(: ,1)=JR(I,1); XO];
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x(:,n+l)=[K(1,n+l); Xn];

for i=l:n-i

x(:,i+l)=[R(1,i+l); ydl(i); u(i); udl(i)];

end;

if cleargr

clf;

hold on;

grid on;

end;

%% PLOTTING OF THE CALC/SPECTKAJECTOKY,VELOCITY,

CONTKOLSIGNAL AND ACCELERATION %%

plotadm=O;

while spc_plot

if plotadm

if spc_plot<lO

figure;

hold on;

grid on;

title(['One dim. traj: mprl41knovel.m ii =

',num2str(lambdal),' 12 = ',num2str(lambda2),' ep =

',num2str(ep),' n = ',num2str(n)])

xlabel(['Total error : ,,num2str(Total_error),

' Point error : ',num2str(Point_error),' Graph :

',num2str(spc_plot),' Time t'])

if spa_plot<6

for k=O:n

plot(k*h,x(l,k+l),'o')

end;

end;

end;

end;

breakadm=O;

fadm=O; %% NORMALLY fadm=O, NECESSAKY FOKWKITING

OF TEXTS IN THE PLOT %%
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for j =0 :m

eAtau=expm (A,j.h/m) ;

for i=fadm:n-1 _,_. CHOOSE e.g 2:n-3 TO AVOID

PROBLEMS AT THE ENDPOINTS Y,7,

entry( :,i+l) =eAt au* (x( :,i+l) +Mtau( :,4*j+1:4.]+4) *

Minv* (e_Ah*x ( :,i+2) -x( :,i+l) )) ;

csignvec (:,i+ I)=B' *expm(-A' *j *h/m)*Minv* (e_Ah*x ( :,i+2) -

x(: ,i+l)) ;

if j==O

if i==fadm;

entryl=entry (i, fadm+l) ;

entry2=entry (2, fadm+l) ;

ent ry3=entry (3, fadm+l) ;

ent ry4=ent ry (4, fadm+ I) ;

cs ignvec I=cs ignvec (I,fadm+ I) ;

end;

end;

if rem(],mp)==O

if j<=m-rap

traj ect (1, jImp*n+ (i+1)) =entry (1, i+1) ;

end;

end;

if j==m

if i==n-I

traj ect (1,6*n+l) =entry(l, i+l) ;

end;

end ;

if spc_plot==l

plot(i*h+j*h/m,entry(l,i+l), '. ') %% TRAJECTORY %Y,

plot(i*h+j*h/m,entry(3,i+l),' ') 7.7.CONTROL u Y._.

7.7.ACCELERATION 7.%

plot (i*h+j *h/m, lambdal*entry (2, i+l) +

entry(3,i+l)+ep*csignvec(1,i+l),'

elseif spc_plot==2

plot(i*h+j*h/m,entry(l,i+l),' ')

plot(i*h+j*h/m,entry(2,i+l),' ')

plot(i*h+j*h/m,entry(3,i+l),' ')

,)

ZZ TRAJECTORY ZZ

Z% VELOCITY %Z

%% CONTROL u Z%
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plot(i,h+j*h/m,lambdal*entry(2,i+l)+entry(3,i+l)+

ep*csignvec(l,i+l),' ') %_ ACCELERATION %%

elseif spc_plot==3

plot(i*h+j*h/m,entry(l,i+l),' ') %_ TRAJECTORY %_

plot(i.h+j*h/m,lambdal*entry(2,i+l)+entry(S,i+l)+

ep*csignvec(l,i+l),'.') %% ACCELERATION _%

elseif

plot

plot

elseif

plot

plot

elseif

plot

spc_plot==4

(i*h+j*h/m,entry(l

(i*h+j*h/m,entry(2

spc_plot==5

(i*h+j*h/m,entry(l

(i*h+j*h/m,entry(3

spc_plot==6

(i*h+j*h/m,entry(4,

,i+l),' ') %% TKAJECTOKY Z%

,i+l),' ') %% VELOCITY %%

,i+l),' ') %% TRAJECTORY %%

,i+l),' ') %% CONTROL u %%

i+l),' ') %% CONTROL DER

u-dot %%

elseif spc_plot==7

csignvec(:,i+l)=B'*expm(-A'*j*h/m)*Minv*

(e_Ah*x(:,i+2)-x(:,i+l));

%% CONTROLSIGNAL w %_

plot(i*h+j*h/m,csignvec(l,i+l),' ')

elseif spc_plot==8

csdlvec(:,i+l)=B'*A'*expm(-A'*j*h/m)*Minv*

(e_Ah*x(:,i+2)-x(:,i+l));

%% CONTROL DER w-dot %%

plot(i*h+j*h/m,csdlvec(l,i+l),'.')

if 3==0

csdvecl=csdlvec(l,l);

end;

elseif spc_plot==9

csd2vec(:,i+l)=B'*A'*A'*expm(-A'*j*h/m)*

Minv*(e_Ah*x(:,i+2)-x(:,i+l));

%% CONTROL DERx2 w-dot-dot %%

plot(i*h+j*h/m,csd2vec(l,i+l),' ')

if 3==0

csdvec2=csd2vec(l,l);

end;

else
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disp(' ')

disp(' NOT A VALID CHOICE ')

breakadm=1 ;

end ;

if breakadm

break;

end ;

end ;

if breakadm

break;

end ;

end;

if spc_plot<lO

ax=axis ;

a.x2=a_(1,2) ;

if ax2<1.5

xpos=3/4*O. 2 ;

elseif ax2>=5

xpo s=3/4;

else

xpos=O. 25 ;

end ;

if spc_plot<3

ax4=ax (I ,4) ;

if ax4< 1

ax4=ax4* i0 ;

if ax4<l

ax4=ax4* I0 ;

end;

end ;

if ax4>lO

ax4=ax4/I0 ;

if ax4> I0

ax4=ax4/I0 ;

end ;

end;

if rem(ax4,2) ==0
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yadd= (ax (1,4)/4) * 1/5 ;

else

yadd= (ax (1,4)/3)*1/5 ;

end;

ypo s=lambdal*ent ry2+entry3+ep*csiEnvec I;

text (-xpos ,ypos, ['ACC'] ) ;

if abs(ypos-entry3)>yadd

text(-xpos,entry5, ['CS u']) ;

elseif ypos-entry3>O

text (-xpos, entryS-yadd, ['CS u' ] ) ;

else

text (-xpos, entry3+yadd, ['CS u'] ) ;

end ;

if spc_plot==2

text (-xpos, entry2, ['VEL' ]) ;

end ;

end;

if spc_plot==3

ypo s=lambdal*ent ry2+ent ry3+ep*csignvec I ;

text(-xpos,ypos, ['ACC']) ;

end ;

if spc_plot==4

text (-xpos, entry2, ['VEL' ] ) ;

end ;

if spc_plot==5

text(-xpos,entry3, ['CS u']) ;

end;

if spc_plot==6

text (-xpos, entry4, ['udl' ] ) ;

end;

if spc_plot==7

text(-xpos,csignvecl, ['CS w']) ;

end ;

if spc_plot==8

text (-xpos,csdvecl, ['wdl']) ;

end ;

if spc_plot==9
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text(-xpos,csdvec2,['wd2']);

end;

end;

ZZ ESTIMATION OF THE ACCURACY IN THE

SPLINE APPROXIMATION _Z

if plotadm==O

[Total_error,Average_error,Point_error,

End_point_error]=spline_error(pointfcn,R,traject);

Total_error

Average_error

Point_error

End_point_error

title(['One dim. traj: mprl41kuovel.m 11 =

',num2str(lambdal), ' 12 = ',num2str(lambda2),

' ep =',num2str(ep),' n = ',num2str(n)])

xlabel(['Total error : ',num2str(Total_error),

' Point error : ',num2str(Point_error),'

',num2str(spc_plot),' Time t'])

if spc_plot<6

for k=O:n

plot(k*h,x(1,k+l),'o')

end;

end;

end;

Graph :

plotadm=plotadm+l;

disp(' ')

disp(' FOLLOWING OPTIONS ARE AVAILABLE : ')

disp(' ')

disp(' FINISH THE PROGRAM : 0 ')

disp(' DISPLAY THE TRAJECTORY, CONTROL u AND

ACCELERATION : 1 ')

disp(' DISPLAY THE TRAJECTORY, VELOCITY, CONTROL u AND

ACCELERATION : 2 ')

disp(' DISPLAY THE TRAJECTORY AND ACCELERATION : 3 ')
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disp(' DISPLAY THE TRAJECTORY AND VELOCITY : 4 ')

disp(' DISPLAY THE TRAJECTORY AND CONTROL u : 5 ')

disp(' DISPLAY THE FIRST DERIVATIVE OF THE CONTROL

u:6')

disp(' DISPLAY THE CONTROLSIGNAL w : 7 ')

disp(' DISPLAY THE FIRST DERIVATIVE OF THE CONTROL

w : 8 ')

disp(' DISPLAY THE SECOND DERIVATIVE OF THE CONTROL

w : 9 ')

spc_plot = input(' MAKE YOUR CHOICE : ');

end;

clear global;

for k=2:plotadm

delete(k);

end;

end;

function [Q,cnt] = quad814mod(funfcn,a,b,tol)

_Alteration of the original matlab toolbox program.

_QUAD8 Numerical evaluation of an integral, higher order

method. Q = QUAD8('F',A,B,TOL) approximates the

integral of F(X) from to B to within a relative error

of TOL. 'F' is a string containing the name of the

function. The function must return a 4*4-matrix

output value if given an input value.

Q = Inf is returned if an excessive recursion level

is reached indicating a possibly singular integral.

QUAD8 uses an adaptive recursive Newton Cotes 8 panel

rule.

Cleve Moler, 5-08-88.

Copyright (c) 1984-94 by _"ne MathWorks, Inc.

[Q,cnt] = quad8(F,a,b,tol) also returns a function

evaluation count.

Top level initialization, Newton-Cotes weights

w = [3956 23552 -3712 41984 -18160 41984 -3712 23552
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3956]/14175;

x = a + (0:8)*(b-a)/8;

7. set up function call

for i=x

y = [y feval(funfcn,i)];

end;

7. Adaptive, recursive Newton-Cotes 8 panel quadrature

QO = zeros(4);

[Q,cnt] = quad814stpmod(funfcn,a,b,tol,O,w,x,y,OO);

cnt = cnt + 9;

end;

function [Q,cnt] = quad814stpmod(FunFcn,a,b,tol,lev,

w,xO,fO,QO)

7.Alteration of the original matlab toolbox program.

7.QUAD8STP Recursive function used by QUAD8.

7.
7.
7.

7.
7.
7.
7.

7.
7.
7.

7.
7.
7.

[Q,cnt] = quad8stp(F,a,b,tol,lev,w,f,QO) tries to

approximate the integral of f(x) from a to b to

within a relative error of tol. F is a string

containing the name of f. The remaining arguments

are generated by quad8mod or by the recursion.

lev is the recursion level.

w is the weights in the 8 panel Newton Cotes formula.

xO is a vector of 9 equally spaced abscissa is the

interval.

fO is a matrix of the 9 function values at x.

QO is an approximate value of the integral.

Cleve Moler, 5-08-88.

Copyright (c) 1984-94 by The MathWorks, Inc.

LEVMAX = I0;

7. Evaluate function at midpoints of left and
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right half intervals.

x = zeros(l,17);

x(1:2:17) = xO;

x(2:2:16) = (x0(1:8) + x0(2:9))/2;

f(:,l:4)= fO(:,l:4);

for 1=1:8

f(:,8.i-3:8.i) = feval(FunFcn,x(2*i));

f(:,8.i+1:8.i+4) = (f0(:,4.i+1:4.i+4));

end;

Integrate over half intervals.

h = (b-a)/16;

QI=O;Q2=O;

for i=1:9

ql = Q1 + h*w(i)*f(:,4*i-3:4*i);

Q2 = Q2 + h*w(lO-i)*f(:,69-i*4:72-i*4);

end;

Q = Q1 + q2;

XX Recursively refine approximations.

if norm(Q - QO) > tol*norm(Q) & lev <= LEVMAX

c = (a+b)/2;

[Ql,cntl] = quad814stpmod(FunFcn,a,c,tol/2,1ev+l,

w,x(l:9),f(:,l:36),Ql);

[Q2,cnt2] = quad814stpmod(FunFcn,c,b,tol/2,1ev+l,

w,x(9:IY),f(:,33:68),Q2);

Q = QI + Q2;

cnt = cnt + cntl + cnt2;

end

end;
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function x = mprl51knovel (spc_plot,t,n, cleargr,pointfcn,

lambdal, lambda2, ep)

%% THIS PROGRAM CALCULATES CONTROLLAWS FOR A ONE

DIMENSIONALTRAJECTORY %%

%% spc_plot DETERMINES WHICH GRAPH TO BE DISPLAYED,

CHOSE AN INTEGER =<II %%

%% t IS THE TIME PERIOD FOR WHICH THE SYSTEM IS

TO BE CONTROLLED %%

%% n ARE THE NUMBER OF POINTS AT THE SPECIFIED

TRAJECTORY, CHOSE t/n>i/10 %%

%% cleargr CLEARS THE CURRENT WINDOW, CHOSE 10R 0 %%

%% pointfcn SPECIFIES THE TRAJECTORY %%

%% lambdal AFFECTS THE INSTABILI_"/ OF THE SYSTEM %%

%% USE lambdal<>0 TO AV0ID NUMERICAL PROBLEMS WHEN

DETERMINE THE MATRIX WW %%

%% lambda2 ALSO EFFECTS THE STABILITY/ OF THE SYSTEM,

CHOSE 11"=12 %%

%% ep<>0 PUTS A ZER0 IN THE TRANSFERFUNCTION %%

global A B h t n

%% THE SYSTEM %%

A=[ 01000;

0 lambdal i 00;

00010;

0000 i;

0000 lambda2] ;

B=[ 0 ep 00 i]';

c--[I o ooo];

%% FUNCTION pointfcn DETERMINES THE SPECIFIED TRAJECTORY %%

%% NECESSARY F0R THE COMPOUND FUNCTION pointsinl2 %%
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if pointfcn=='pointsinl2';

t=5.2;

n=26;

end;

R=feval(pointfcn);

%% CALCULATION OF THE INTEGRAL FROM 0 TO h %%

m=48;

mp=m/6;

tol=le-08;

%% NUMBER OF POINTS BETWEEN INTERPOLATION,

CHOSE A MULTIPLE OF 6 %%

_% NEEDED FOR fcn spline_error THAT DETERMINES

THE PRECISION IN THE SPLINE APPROXIMATION %%

_ THE NUMERIC ERROR TOLERANCE _

Mtau(:,l:5)=zeros(5);

tau=0;

for j=l:m

oldtau=tau;

tau=oldtau+h/m;

Mtau(:,5*j+l:S*j+5)= quad815mod('integrand',oldtau,tau,tol)

+ Mtau(:,5*j-4:S*j);

end;

M=Mtau(:,5*m+l:5*m+5);

%% FORMING OF THE MATRICES FOR THE BLOCKDIAGONAL SYSTEM %%

e_Ah=expm(-A*h);

Minv=inv(M);

ZZ=Minv*e_Ah;

WW=e_Ah'*ZZ+Minv;

_ CONTINUOUS CONTROLLAW _

WLDO= [ep*WW (2,2) +WW (5,2) ep*WW (2,3) +WW (5,3)

ep*WW(2,4) +WW(5,4) ep*WW(2,5) +WW(5,5)] ;



10 MATLAB PROGRAMS 86

ZLUDO= [ep*ZZ (2,2) +ZZ (5,2) ep*ZZ (2,3) +ZZ (5,3)

ep*ZZ(2,4)+ZZ(5,4) ep*ZZ(2,5)+ZZ(5,5)] ;

ZLLDO= [ep*ZZ (2,2) +ZZ (2,5) ep*ZZ (3,2) +ZZ (3,5)

ep*ZZ (4,2) +ZZ (4,5) ep*ZZ (5,2) +ZZ (5,5) ] ;

WR/)0=[ep*WW(2, I)+WW(5, I)] ;

ZRUD0 = [ep*ZZ (2,i)+ZZ (5,1) ];

ZRLD0= [ep*ZZ (I,2)+ZZ (I,5)] ;

%% CONTINUOUS FIRST DIFFERENTIAL OF CONTROLLAW %%

WLDl=[ep*WW(1,2)+ep*lambdal*WW(2,2)+WW(4,2)+lambda2*WW(5,2)

ep*WW(1,3)+ep*lambdal*WW(2,3)+WW(4,3)+lambda2*WW(5,3)

ep*WW(1,4)+ep*lambdal*WW(2,4)+WW(4,4)+lambda2*WW(5,4)

ep*WW(1,5)+ep*lambdal*WW(2,5)+WW(4,5)+lambda2*WW(5,5)];

ZLUDl=[ep*ZZ(1,2)+ep*lambdal*ZZ(2,2)+ZZ(4,2)+lambda2*ZZ(5,2)

ep*ZZ(1,3)+ep*lambdal*ZZ(2,3)+ZZ(4,3)+lambda2*ZZ(5,3)

ep*ZZ(1,4)+ep*lambdal*ZZ(2,4)+ZZ(4,4)+lambda2*ZZ(5,4)

ep*ZZ(1,5)+ep*lambdal*ZZ(2,5)+ZZ(4

ZLLDI=[ep*ZZ(2,1)+ep*lambdal*ZZ(2,2)+ZZ(2

ep*ZZ(3,1)+ep*lambdal*ZZ(3,2)+ZZ(3

ep*ZZ(4,1)+ep*lambdal*ZZ(4,2)+ZZ(4

ep*ZZ(5,1)+ep*lambdal*ZZ(5,2)+ZZ(5,4)+lambda2*ZZ(5,5)];

WRDl=[ep*WW(l,l)+ep*lambdal*WW(2,1)+WW(4,1)+lambda2*WW(5,1)];

ZRUDl=[ep*ZZ(l,l)+ep*lambdal*ZZ(2,1)+ZZ(4,1)+lambda2*ZZ(5,1)];

ZRLDl=[ep*ZZ(l,l)+ep*lambdal*ZZ(l,2)+ZZ(l,4)+lambda2*ZZ(l,5)];

,5)+lambda2*ZZ(5,5)];

,4)+lambda2*ZZ(2,5)

,4)+lambda2*ZZ(3,5)

,4)+lambda2*ZZ(4,5)

%% CONTINUOUS SECOND DIFFERENTIAL OF CONTROLLAW %%

WLD2=[ep*lambdal*WW(1,2)+ep*lambdal'2*WW(2,2)+WW(3,2)+

lambda2*WW(4,2)+lambda2"2*WW(5,2) ep*lambdal*WW(1,3)+

ep*lambdal^2*WW(2,3)+WW(3,3)+lambda2*WW(4,3)+

lambda2^2*WW(5,3) ep*lambdal*WW(1,4)+ep*lambdal'2*

WW(2,4)+WW(3,4)+lambda2*WW(4,4)+lambda2"2*WW(5,4)

ep*lambdal*WW(1,5)+ep*lambdal'2*WW(2,5)+WW(3,5)+

lambda2*WW(4,5)+lambda2"2*WW(5,5)];

ZLUD2=[ep*lambdal*ZZ(1,2)+ep*lambdal'2*ZZ(2,2)+ZZ(3,2)+

lambda2*ZZ(4,2)+lambda2"2*ZZ(5,2) ep*lambdal*ZZ(1,3)+



10 MATLAB PROGRAMS 87

ep*lambdal "2*ZZ (2,3) +ZZ (3,3) +lambda2*ZZ (4,3) +

lambda2"2*ZZ (5,3) ep.lambdal*ZZ (i,4) +ep*lambdal" 2"

ZZ (2,4) +ZZ (3,4) +lambda2*ZZ (4,4) +lambda2" 2*ZZ (5,4)

ep*lambdal*ZZ (I,5)+ep*lambdal ^2*ZZ (2,5) +ZZ (3,5) +

lambda2*ZZ (4,5) +lambda2" 2*ZZ (5,5) ] ;

ZLLD2= [ep*l ambda I*ZZ (2, I)+ep*lambdal "2*ZZ (2,2) +ZZ (2,3) +

lambda2*ZZ (2,4) +lambda2"2*ZZ(2,5) ep*lambdal*ZZ(3, i)+

ep*lambdal" 2*ZZ (3,2) +ZZ (3,3)+lambda2*ZZ (3,4) +

lambda2^2*ZZ (3,5) ep*lambdal*ZZ(4, l)+ep*lambdal'2*

ZZ (4,2) +ZZ (4,3) +lambda2*ZZ (4,4) +lambda2" 2*ZZ (4,5)

ep*l ambdal*ZZ (5, i)+ep*lambdal "2*ZZ (5,2) +ZZ (5,3) +

lambda2*ZZ (5,4) +lambda2" 2*ZZ (5,5) ] ;

WRD2= [ep*lambdal*WW (i, I)+ep*lambdal'2*WW(2, I)+WW(3, I)+

lambda2*WW(4, i)+lambda2"2*WW(5, I)] ;

ZRUD2= [ep*lambdal*ZZ (I, I)+ep*lambdal'2*ZZ (2, l)+ZZ (3, I)+

lambda2*ZZ(4, i)+lambda2"2*ZZ (5, I)] ;

ZRLD2= [ep*lambdal*ZZ (I, I)+ep*l ambdal "2*ZZ (i,2)+ZZ (I,3)+

lambda2*ZZ (I ,4)+lambda2^2*ZZ (1,5)] ;

%% CONTINUOUS THIRD DIFFERENTIAL 0F CONTROLLAW %%

WLD3=[ep*leLmbdal^2*WW(l,2)+(ep*lambdal^3+l)*W-W( 2,

WW(3,2)+lambda2^2*WW(4,2)+lambda2^3*WW(5,2)

ep.lambdal'2*WW(l,3)+(ep*lambdal^3+l)*WW(2,

WW(3,3)+lambda2^2*WW(4,3)+lambda2"3*WW(5,3)

ep.lambdal'2.WW(l,4)+(ep*lambdal'3+l)*WW(2,

WW(S,4)+lambda2^2*WW(4,4)+lambda2^3*WW(5,4)

ep.lambdal'2.WW(l,5)+(ep*lambdal'3+l)*WW(2,

WW(3,5)+lambda2"2*WW(4,S)+lambda2"3*WW(5,5)

ZLUD3=

2)+lambda2*

3)+lambda2*

4)+lambda2*

5) +lambda2*

];

[ep*l ambdal "2*ZZ (I,2)+ (ep*lambdal "3+I) *ZZ (2,2) +lambda2*

ZZ(3,2) +lambda2" 2*ZZ (4,2) +lambda2^ 3*ZZ (5,2)

ep* iambdal "2*ZZ (i,3)+ (ep*l ambdal ^3+ i)*ZZ (2,3) +i ambda2*

ZZ (3,3) +I ambda2 ^2*ZZ (4,3) +lambda2"3*ZZ (5,3)

ep*l ambda i"2*ZZ (I,4)+ (ep*l ambda i"3+ i)*ZZ (2,4) +lambda2*

ZZ (3,4) +lambda2" 2*ZZ (4,4) +i ambda2 ^3*ZZ (5,4)

ep*lambdal'2*ZZ (1,5) + (ep*lambdal'3+l) *ZZ (2,5) +lambda2*

ZZ(3,5) +lambda2" 2*ZZ (4,5) +lambda2"3*ZZ(5,5)] ;
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ZLLD3= [ep*lambdal ^2*ZZ (2,1) + (ep*lambdal'3+ 1) *ZZ (2,2) +lambda2*

ZZ (2,3) + 1 ambda2" 2*ZZ (2,4) +lambda2" 3*ZZ (2,5)

ep* 1 ambda 1 "2*ZZ (3,1) + (ep*l ambdal "3+ 1) *ZZ (3,2) + lambda2*

ZZ (3,3) + 1ambda2" 2*ZZ (3,4) +lambda2" 3*ZZ (3,5)

ep* lambda 1 "2*ZZ (4, 1) + (ep*l ambdal "3+ 1) *ZZ (4,2) +lambda2*

ZZ (4,3) +1 ambda2" 2*ZZ (4,4) +lambda2"3*ZZ (4,5)

ep*lambdal'2*ZZ (5,1) + (ep*lambdal'3+l) *ZZ (5,2)+lambda2*

ZZ (5,3) +1 ambda2" 2*ZZ (5,4) +lambda2" 3*ZZ (5,5) ] ;

WRD3= [ep*lambdal'2*WW(1,1) + (ep*lambdal'3+l)*WW(2,1) +lambda2*

WW(3,1) +lambda2"2*WW(4,1) +lambda2"3*WW(5,1)] ;

ZRUD3= [ep*l ambdal'2*ZZ (1,1) + (ep*lambdal "3+ 1) *ZZ (2,1) +lambda2*

ZZ(3,1) +lambda2"2*ZZ (4, 1) +lambda2"3*ZZ(5,1)] ;

ZRLD3= [ep* 1 ambda 1 "2*ZZ (1,1) + (ep*l ambdal "3+ 1) *ZZ (1,2) +lambda2*

ZZ(1,3) +lambda2" 2*ZZ (1,4) +lambda2"3*ZZ (1,5)] ;

%% DIFFERENTIAL APPROXIMATIONS FORTHE BOUNDARY CONDITIONS %%

ydl0=(R(1,2)-R(1,1))/h;

ydll=(R(1,3)-R(1,2))/h;

yd12=(R(1,4)-R(1,3))/h;

yd13=(R(1,5)-R(1,4))/h;

ydln=(R(1,n+l)-R(1,n))/h;

ydln_l=(R(1,n)-R(1,n-1))/h;

ydln_2=(R(1,n-1)-R(1,n-2))/h;

ydln_3=(R(1,n-2)-R(1,n-3))/h;

u0=(ydl0-ydll)/h;

ul=(ydll-ydl2)/h;

u2=(yd12-yd13)/h;

un=(ydln_l-ydln)/h;

un l=(ydln_2-ydln_l)/h;

un_2=(ydln_3-ydln_2)/h;

udl0=(u0-ul)/h;

udll=(ul-u2)/h;

udln=(un_l-un)/h;

udln_l=(un 2-un 1)/h;

ud20=(udl0-udll)/h;

ud2n=(udln_l-udln)/h;
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%% 4/5 of the the first state vector %%

XO=[ydlO; uO; udlO; ud20];

%% 4/5 of the the last state vector %%

Xn=[ydln; un; udln; ud2n];

%% FORMING OF THE RIGHT HAND SIDE OF THE

BLOCKDIAGONAL SYSTEM %%

j=l;

for i=2:n

Omega(j,I)=-ZRLDO*R(I,i-I)+WRDO*R(I,i)-ZRUDO*R(I,i+I);

j=j+i;
0mega(j,I)=-ZRLDi*R(1,i-1)+WRDi*R(1,i)-ZRUDi*R(i,i+i);

j=j+i;

0mega(j,I)=-ZRLD2*R(i,i-i)+WRD2*R(I,i)-ZRUD2*R(i,i+i);

j=j+l;

0mega(j,I)=-ZRLD3*R(i,i-i)+WPd)3*R(i,i)-ZRUDS*R(1,i+i);

j=j+l;

end;

Omega(l,l)=Omega(l,l)-ZLhDO*XO;

Omega(2,1)=Omega(2,1)-ZLLDl*XO;

Omega(3,1)=Omega(3,1)-ZLLD2*XO;

Omega(4,1)=Omega(4,1)-ZLLD3*XO;

Omega(4*n-7,1)=Omega(4*n-Z,l)-ZLUDO*Xn;

Omega(4,n-6,1)=Omega(4*n-6,1)-ZLUDl*Xn;

Omega(4*n-5,1)=Omega(4*n-5,1)-ZLUD2*Xn;

Omega(4*n-4,1)=Omega(4*n-4,1)-ZLUD3*Xn;

%% FORMING OF I_HE LEFT HAND SIDE OF THE

BLOCKDIAGONAL SYSTEM %%

for i=1:4

DD(1,i)=-WLDO(I,i);

DD(2, i)=-WED1 (I,i) ;

DD(3,i)=-WLD2(I,i);

DD(4,i)=-WLD3(I,i);

if n>2
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DD(I,i+4)=ZLUDO(I,i);

DD(2,i+4)=ZLUDI(I,i);

DD(S,i+4)=ZLUD2(I,i);

DD (4, i+4)=ZLUD3 (i,i) ;

end;

end;

for i=2:n-2

for j=-l:2

DD(4*i-3,4*i-6+j)=ZLLDO(1,j+2);

DD(4*i-3,4*i-2+j)=-WLDO(I,j+2);

DD(4*i-3,4*i+2+j)=ZLUDO(I,j+2);

DD(4*i-2,4*i-6+j)=ZLLDI(1,j+2);

DD(4,i-2,4*i-2+j)=-WLDI(1,j+2);

DD(4,i-2,4*i+2+j)=ZLUDI(1,j+2);

DD(4,i-I,4*i-6+j)=ZLLD2(1,j+2);

DD(4*i-I,4*i-2+j)=-WLD2(1,j+2);

DD(4*i-I,4*i+2+j)=ZLUD2(1,j+2);

DD(4*i, 4*i-6+j)=ZLLD3(I,j+2);

DD(4*i, 4*i-2+j)=-WLD3(I,j+2);

DD(4*i, 4*i+2+j)=ZLUD3(1,j+2);

end;

end;

if n>2

for i=1:4

DD(4*n-7,4*n-12+i)=ZLLDO(I,i);

DD (4.n-6,4*n- 12+i) =ZLLD 1(i,i) ;

DD (4.n-5,4*n- 12+i) =ZLLD2 (i, i) ;

DD (4*n-4,4*n- 12+i) =ZLLD3 (1,i) ;

DD(4*n-Z,4*n-8+i)=-WLDO(1,i);

DD(4*n-6,4*n-8+i)=-WLDI(1,i);

DD(4*n-5,4*n-8+i)=-WLD2(1,i);

DD(4*n-4,4*n-8+i)=-WLD3(1,i);

end;

end;

DD=sparse(DD); %% SQUEEZING OUT ALL ZERO ELEMENTS

FRDM MATRIX DD %%
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_ GAUSSELIMINATION T0 PRODUCE AN UPPER TRIANGULAR SYSTEM _

for k=2:4:4*n-lO

for l=k:k+6

if DD(k-l,k-l)-=0

zd=DD (l,k-l)/DD(k-I ,k-l) ;

DD(I,:)=DD(I,:)-zd*DD(k-I,:);

0mega(l,l)=0mega(l,1)-zd*0mega(k-l,l);

end;

end;

for l=k+l:k+6

if mD(k,k)-=0

zd=DD(l,k)/DD(k,k) ;

DD(I,:)=DD(I,:)-zd*DD(k,:);

0mega(l,l)=Omega(l,l)-zd*0mega(k,l);

end;

end;

for l=k+2:k+6

if DD(k+l,k+l)'=0

zd=DD(l,k+l)/DD(k+l,k+l);

DD(I,:)=DD(I,:)-zd*DD(k+I,:);

0mega(l,l)=Omega(l,l)-zd*0mega(k+l,l);

end;

end;

for l=k+S:k+6

if DD(k+2,k+2)~=0

zd=DD(l,k+2)/DD(k+2,k+2);

DD(I,:)=DD(I,:)-zd*DD(k+2,:);

0mega(l,l)=0mega(l,1)-zd*0mega(k+2,1);

end;

end;

end;

k=4*n-7;

if DD(k,k)'=0

zd=DD(k+l,k)/DD(k,k);

DD(k+I,:)=DD(k+I,:)-zd*DD(k,:);
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Omega(k+l, 1)=Omega(k+1,1) -zd*Omega(k, 1) ;

zd=DD (k+2,k)/DD (k, k) ;

DD(k+2, : ) =DD(k+2, : )-zd*DD (k, : ) ;

Omega (k+2,1) =Omega (k+2,1) -zd*Omega (k, 1) ;

zd=DD (k+3,k)/DD (k,k) ;

DD(k+3, :)--DD(k+3, :)-zd*DD(k, :);

Omega(k+3, l)=Omega(k+3, I)-zd*Omega(k, I) ;

end;

if DD(k+l,k+l)-=O

zd=DD(k+2,k+l)/DD (k+1 ,k+l) ;

DD(k+2, :)=DD(k+2, : )-zd*DD(k+l, : ) ;

Omega (k+2,1) =Omega (k+2,1) -zd* Omega (k+ 1,1 ) ;

zd=DD (k+3, k+ 1)/DD (k+ 1, k+ 1) ;

DD(k+3, :)=DD(k+3, :)-zd*DD(k+l, :) ;

Omega (k+3,1) =Omega (k+3, 1) -zd*Omega (k+ 1,1) ;

end;

if DD(k+2,k+2)-=O

zd=DD (k+3, k+2)/DD (k+2, k+2 ) ;

DD(k+3, : ) =DD (k+3, : )-zd*DD (k+2, : ) ;

Omega (k+3,1) =Omega (k+3,1) -zd*Omega (k+2,1) ;

end ;

_ BACKSUBSTITUTION TO SOLVE FOR THE STATEVECTOBS _

ud2(n-1)=Omega(4*n-4,1)/DD(4*n-4,4*n-4);

udl(n-1)=(Omega(4*n-5,1)-DD(4*n-5,4*n-4)*ud2(n-1))/

DD(4*n-5,4*n-5);

u(n-1)=(Omega(4*n-6,1)-DD(4*n-6,4*n-4)*ud2(n-1)-

DD(4,n-6,4*n-5)*udl(n-1))/DD(4*n-6,4*n-6);

ydl(n-1)=(Omega(4*n-7,1)-DD(4*n-7,4*n-4)*ud2(n-1) -

DD(4,n-7,4*n-5)*udl(n-1)-DD(4*n-7,4*n-6)*u(n-1))/

DD(4*n-7,4*n-7);

if n>2

for k=n-2:-l:l

ud2(k)=(Omega(4*k,1)-DD(4*k,4*k+4)*ud2(k+l)-

DD(4,k,4,k+3)*udl(k+l)-DD(4*k,4*k+2)*u(k+l)-

DD(4,k,4,k+l)*ydl(k+l))/DD(4*k,4*k);
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udl(k)=(Omega(4,k-l,l)-DD(4*k-l,4*k+4)*ud2(k+l)-

DD(4,k_l,4,k+3),ud1(k+l)-DD(4*k-l,4*k+2)*u(k+1)-

DD(4,k-1,4,k+1),ydl(k+l)-DD(4*k-l,4*k)*ud2(k))/

DD(4*k-l,4*k-l);

u(k)=(Omega(4.k-2.1)-DD(4*k-2.4*k+4)*ud2(k+l)-

DD(4.k-2.4.k+3).udl(k+l)-DD(4*k-2.4*k+2)*u(k+l)-

DD(4.k-2.4.k+l).ydl(k+l)-DD(4*k-2.4*k)*ud2(k)-

DD(4.k-2.4.k-1)*udl(k))/DD(4*k-2,4*k-2);

ydl(k)=(Omega(4.k-3.1)-DD(4*k-3.4*k+4)*ud2(k+l)-

DD(4,k-3.4.k+3).udl(k+l)-DD(4*k-3.4*k+2)*u(k+l)-

DD(4.k-3,4.k+l).ydl(k+l)-DD(4*k-3.4*k)*ud2(k)-

DD(4.k-3.4.k-1)*udl(k)-DD(4*k-3.4*k-2)*u(k))/

DD(4*k-3.4*k-3);

end;

end ;

Z% MAKING OF THE STATEVECTORS %%

x(:,1)--[R(1,1); XO] ;
x(:.n+l)=[R(1.n +1); Xn];

for i=l:n-I

x(:,i+l)=[R(l,i+l); ydl(i); u(i);

end ;

udl(i); ua2(i)] ;

93

if cleargr

clf;

hold on;

grid on;

end;

%% PLOTTING OF THE CALC/SPEC TRAJECTORY,VELOCITY,

CONTROLSIGNAL AND ACCELERATION %%

plotadm=O;

while spc_plo%

if plotadm

if spc_plo%<12
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figure;

hold on;

grid on;

title(['One dim. traj: mpr151knovel.m 11 =

',num2str(lambdal),' 12 = ',num2str(lambda2),

',num2str(ep),' n = ',num2str(n)])

xlabel(['Total error : ',num2str(Total_error),

Point error : ',num2str(Point_error),'

',num2str(spc_plot), _ Time t'])

if spc_plot<6

for k=0:n

plot(k*h,x(l,k+l),'o')

end;

end;

end;

end;

breakadm=0;

fadm=O; %% NORMALLY fadm=0, NECESSARY F0R WRITING OF

TEXTS IN THE PLOT %%

' epffi

Graph :

for j=O:m

eAtau=expm(A*j*h/m);

for i=fadm:n-I %Z CHOOSE e.g 2:n-3 TO AVOID

PROBLEMS AT THE ENDPOINTS Z%

entry(:,i+l)=eAtau*(x(:,i+l)+Mtau(:,5*j+l:S*j+5)*

Minv*(e_Ah*x(:,i+2)-x(:,i+l)));

csignvec(:,i+l)=B'*expm(-A'*j*h/m)*Minv*

(e_Ah*x(:,i+2)-x(:,i+1));

if j==o
if i==fadm;

entryl=entry(l,fadm+l);

entry2=entry(2,fadm+l);

entry3=entry(3,fadm+l);

entry4=entry(4,fadm+l);

entry5=entry(5,fadm+l);

csignvecl=csi_nvec(l,l);

end;O

end;
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if rem(j ,mp)==O

if j <=m-rap

traj ect (i, j/rap*n+ (i+ 1))=entry (1, i+ I) ;

end;

end;

if j==m

if i==n-i

traj ect (I, 6*n+ 1) =entry (I, i+l) ;

end;

end;

if spc_plot==l

plot(i,h+j*h/m,entry(l,i+l),' ') %% TRAJECTORY %%

plot(i,h+j*h/m,entry(3,i+l),'.') %% CONTROL u %%

plot(i,h+j,h/m,lambdal*entry(2,i+l)+entry(3,i+l)+

ep*csignvec(l,i+l),' ') %% ACCELERATION %%

elseif spc_plot==2

plot(i*h+j*h/m,entry(1,i+l),' ') %% TRAJECTORY %%

plot(i*h+j*h/m,entry(2,i+l),' ') %% VELOCITY %%

plot(i*h+j*h/m,entry(3,i+l),' ') %% CONTROL u %%

plot(i,h+j,h/m,lambdal,entry(2,i+l)+entry(3,i+l)+

ep*csignvec(l,i+l),'.') %% ACCELERATION %%

elseif spc_plot==3

plot(i,h+j*h/m,entry(l,i+l),'.') %% TRAJECTORY %%

plot(i,h+j,h/m,lambdal*entry(2,i+l)+entry(3,i+l)+

ep,csignvec(l,i+l),' ') %% ACCELERATION %%

elseif spc_plot==4

plot(i*h+j*h/m,entry(l,i+l),' ')

plot(i,h+j*h/m,entry(2,i+l),' ')

elseif spc_plot==5

plot(i*h+j*h/m,entry(l,i+l),' ')

plot(i,h+j*h/m,entry(3,i+l),' ')

elseif spc_plot==6

%% CONTROL DEK u-dot %%

plot(i,h+j*h/m,entry(4,i+l),' ')

elseif spc_plot==7

%% CONTROL DERx2 u-dot-dot %%

plot(i,h+j*h/m,entry(5,±+l),'.')

%% TRAJECTORY %%

%% VELOCITY %%

%% TRAJECTORY %%

%% CONTROL u %%
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elseif spc_plot==8

csignvec(:,i+l)=B'*expm(-A'*j*h/m)*Minv*

(e_Ah*x(:,i+2)-x(:,i+l));

%% CONTROLSIGNAL w %%

plot(i*h+j*h/m,csignvec(1,i+l),'.')

elseif spc_plot==9

csdlvec(:,i+l)=B'*A'*expm(-A'*j*h/m)*Minv*

(e_Ah*x(:,i+2)-x(:,i+l));

%% CONTROL DER w-dot %%

plot(i*h+j*h/m,csdlvec(l,i+l),' ')

if j==0
csdvecl=csdlvec(l,l);

end;

elseif spc_plot==lO

csd2vec(:,i+l)=B'*A'*A'*expm(-A'*j*h/m)*Minv*

(e_Ah*x(:,i+2)-x(:,i+l));

%% CONTROL DERx2 w-dot-dot %%

plot(i*h+j*h/m,csd2vec(l,i+l),' ')

if j::o
csdvec2=csd2vec(l,l);

end;

elseif spc_plot==11

csd3vec(:,i+l)=B'*A'*A'*A'*expm(-A'*j*h/m)*

Minv*(e_Ah*x(:,i+2)-x(:,i+l));

%% CONTROL DERx3 w-dot-dot-dot %%

plot(i*h+j*h/m,csd3vec(1,i+l),' ')

if j==o

csdvec3=csd3vec(1,1);

end;

else

disp(' ')

disp(' NOT A VALID CHOICE ')

breakadm= 1;

end ;

if breakadm

break;

end;
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end;

if breakadm

break ;

end;

end;

if spc_plot<12

ax=axis ;

ax2=ax (1,2) ;

if ax2<l. 5

xpos=3/4*O. 2 ;

elseif ax2>=5

xpos--3/4;

else

xpos=O. 25 ;

end ;

if spc_plot<3

ax4=ax (I ,4) ;

if ax4<l

ax4=ax4* I0 ;

if ax4< 1

ax4=ax4* I0 ;

end ;

end ;

if ax4>lO

ax4=ax4/I0 ;

if ax4>lO

ax4=ax4/i0 ;

end ;

end ;

if rem(ax4,2) ==0

yadd= (ax (I ,4)/4)*I/5 ;

else

yadd= (ax (1,4)/3) * 1/5 ;

end ;

ypos=lambdal*ent ry2+entry3+ep*csignvec i ;

text (-xpos,ypos, ['ACC']) ;

if abs (ypos-entryS) >yadd
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text (-xpos,entry3, ['CS u'] ) ;

elseif ypos-entry3>O

text(-xpos,entry3-yadd, ['CS u'] ) ;

else

text (-xpos, entry3+yadd, ['CS u' ]) ;

end;

if spc_plot==2

text (-xpos, entry2, ['VEL' ]) ;

end;

end ;

if spc_plot==3

ypo s=lambdal,ent ry2+entry3+ep*csignvec I;

text (-xpos, ypos, ['ACC' ] ) ;

end;

if spc_plot==4

text (-xpos, entry2, ['VEL'] ) ;

end;

if spc_plot==5

text(-xpos,entry3, ['CS u']);

end ;

if spc_plot==6

text (-xpos, entry4, ['udl' ] ) ;

end;

if spc_plot==7

text (-xpos,entry5, ['ud2']) ;

end ;

if spc_plot==8

text(-xpos,csignvecl, ['CS w']) ;

end ;

if spc_plot==9

text (-xpos,csdvecl, ['wdl']) ;

end ;

if spc_plot==lO

text (-xpos, csdvec2, ['wd2' ] ) ;

end ;

if spc_plot==11

text (-xpos, csdvec3, ['wd3 '] ) ;
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end;

end;

Z% ESTIMATION OF THE ACCURACY IN THE

SPLINE APPROXIMATION %Z

if plotadm==O

[Total_error,Average_error,Point_error,End-point- err°r]=

spline_error(pointfcn,R,traject);

Total_error

Average_error

Point_error

End_point_error

title(['One dim. traj: mprl51knovel.m Ii =

',num2str(lambdal),' 12 = ',num2str(lambda2),' ep =

',num2str(ep),' n = ',num2str(n)])

xlabel(['Total error : ',num2str(Total_error),

' Point error : ',num2str(Point_error),' Graph :

',num2str(spc_plot),' Time t'])

if spc_plot<6

for k=O:n

plot(k*h,x(l,k+l),'o')

end;

end;

end;

plotadm=plotadm+l;

disp(' ')

disp(' FOLLOWING OPTIONS ARE AVAILABLE : ')

disp(' ')

disp(' FINISH THE PROGRAM : 0 ')

disp(' DISPLAY THE TRAJECTORY, CONTROL u AND

ACCELERATION : I ')

disp(' DISPLAY THE TRAJECTORY, VELOCITY, CONTROL u AND

ACCELERATION : 2 ')

disp(' DISPLAY THE TRAJECTORY AND ACCELERATION : 3 ')

disp(' DISPLAY THE TRAJECTORY AND VELOCITY : 4 ')
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disp(' DISPLAY THE TRAJECTORY AND CONTROL u : 5 ')

disp(' DISPLAY THE FIRST DERIVATIVE OF THE CONTROL u : 6 ')

disp(' DISPLAY THE SECOND DERIVATIVE OF THE

CONTROL u : 7 ')

disp(' DISPLAY THE CONTKOLSIGNAL w : 8 ')

disp(' DISPLAY THE FIRST DERIVATIVE OF THE CONTROL w : 9 ')

disp(' DISPLAY THE SECOND DERIVATIVE OF THE

CONTROL w : i0 ')

disp( _ DISPLAY THE THIRD DERIVATIVE OF THE

CONTROL w : 11 ')

spc_plot -- input(' HAKE YOUR CHOICE : ') ;

end ;

clear global ;

for k=2 :plotadm

delete (k) ;

end ;

end;

function [Q,cnt] = quad815mod(funfcn,a,b,tol)

%Alteration of the original matlab toolbox program.

%QUAD8 Numerical evaluation of an integral, higher order

%
%

%
Y.
%
%

%
%
Y.
%

%
%
%
%

method. Q = QUAD8('F',A,B,TOL) approximates the

integral of F(X) from to B to within a relative error

of TOL. 'F' is a string containing the name of the

function. _"ne function must return a 5*5-matrix

output value if given an input value.

Q = Inf is returned if an excessive recursion level

is reached indicating a possibly singular integral.

QUAD8 uses an adaptive recursive Newton Cotes 8 panel

rule.

Cleve Moler, 5-08-88.

Copyright (c) 1984-94 by The MathWorks, Inc.

[Q,cnt] = quad8(F,a,b,tol) also returns a function

evaluation count.

Top level initialization, Newton-Cotes weights
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W = [3956 23552 -3712 41984 -18160 41984 -3712 23552

3956]/14175;

x = a + (0:8)*(b-a)/8;

set up function call

for i=x

y = [y feval(funfcn,i)];

end;

Adaptive, recursive Newton-Cotes 8 panel quadrature

QO = zeros(5);

[Q,cnt] = quad815stpmod(funfcn,a,b,tol,O,w,x,y,qO);

cnt = cnt + 9;

end;

function [Q,cnt] = quad815stpmod(FunFcn,a,b,tol,lev,

w,xO,fO,QO)

_Alteration of the original matlab toolbox program.

_QUAD8STP Recursive function used by QUAD8.

[Q,cnt] = quad8stp(F,a,b,tol,lev,w,f,QO) tries to

approximate the integral of f(x) from a to b to

within a relative error of tol. F is a string

containing the name of f. The remaining arguments

are generated by quad8mod or by the recursion.

lev is the recursion level.

w is the weights in the 8 panel Newton Cotes formula.

xO is a vector of 9 equally spaced abscissa is the

interval.

fO is a matrix of the 9 function values at x.

QO is an approximate value of the integral.

Cleve Moler, 5-08-88.

Copyright (c) 1984-94 by The MathWorks, Inc.

LEVMAX = I0;

Evaluate function at midpoints of left and
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right half intervals.

x = zeros(I,17);

x(1:2:17) = xO;

x(2:2:16) = (xO(l:8) + x0(2:9))/2;

f(:,l:S)= f0(:,1:5);

for i=1:8

f(:,lO*i-4:lO*i) = feval(FunFcn,x(2*i));

f(:,lO*i+l:lO*i+5) = (f0(:,5.i+I:5.i+5));

end;

Integrate over half intervals.

h = (b-a)/16 ;

QI=O;Q2=O;

for i=1:9

Q1 = ql + h.w(i).f(:,5*i-4:5*i);

Q2 = q2 + h*w(10-i)*f(:,86-i*5:90-i*5);

end;

q = QI + Q2;
_ Recursively refine approximations.

if norm(q - q0) > tol*norm(Q) _ lev <= LEVMAX

c = (a+b)/2;

[Ql,cntl] = quad815stpmod(FunFcn,a,c,tol/2,1ev+l,

w,x(1:9),f(:,l:45),Q1);

[Q2,cnt2] = quad815stpmod(FunFcn,c,b,tol/2,1ev+l,

w,x(9:17),f(:,41:85),Q2);

q = Q1 + q2;

cnt = cnt + cntl + cnt2;

end

end;
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function res = integrand(v)

_ THIS SUBPROGRAMDETERMINE THE

CONSTANT M _

global A B

e_AvB=expm(-A*v)*B;

res = e_AvB*e_AvB';

end;

INTEGRAND OF THE MATKIX

function [Total_error,Average_error,Point_error,

End_point_error]=spline_error(pointfcn,R,traject)

global h t n

Total_error=0;

Point_error=0;

n=6*n;

Rp=feval(pointfcn);

n=n/6;

h=t/n;

for i=0:n-1

for ]=0:5

Tot al_error=Tot al_error+abs (tr_] ect (1, ]*n+l+i) -

Rp ( 1, i*6+j +1) ) ;

if j==O

Point_error=Point_error+abs(traject(1,i+l) -R(l,i+l));

end;

end;

end;

Average_error=Total_error/(6*n);

End_point_error=abs(traject(1,6*n+l)-R(l, n+l));

end;

_k ,



10 MATLAB PROGRAMS
104

function R=pointexpll

_. R = l.(n+l)-matrix.

global h t n

%% TIME INTERVAL FOR RENEWAL OF THE TRAJECTORY %%

h=tln;

for j=0:h:n*h

R (I,j/h+ 1) = (I- exp (-3/2" (j-t/2) ))/ (i+exp (-3/2" (j-t/2) )) ;

end;

end;

function R=pointsin12

% R = 1,(n+l)-matrix.

global h t n

%% TIME INTERVAL FOR RENEWAL OF THE TRAJECTORY %%

h=t/n;

%% I APOLOGIZE FOR THE "SMART" PROGRAMING %%

adm=n*3/26;

for j=l:adm

a(1,j)=0;
end;

for j=0:h:(n-2*adm)*h

R(l,j/h+adm+l)=I/10*(l+sin(-pi/2+j*pi/2));

end;

for j=l:adm

R(l,j-adm+n+l)=0;

end;

end;
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function R=pointstepl

R = l*(n+l)-matrix.

global h t n

h=t/n;

for j=0:h:n*h

R(1.j/h+l)=l/2*(l+sign(j-(t/2+0.01)));

end;

end;

%
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